6.化簡(jiǎn)-$\sqrt{-{x}^{3}}$的結(jié)果是( 。
A.x$\sqrt{-x}$B.-x$\sqrt{-x}$C.x$\sqrt{x}$D.-x$\sqrt{x}$

分析 根據(jù)題意x≤0,正確應(yīng)用公式化簡(jiǎn)即可.

解答 解:由題意-x3≥0,故x≤0,
原式=-$\sqrt{-{x}^{3}}$=-$\sqrt{-x({x}^{2})}$=-(-x)$\sqrt{-x}$=x$\sqrt{-x}$,
故選A.

點(diǎn)評(píng) 本題考查二次根式的化簡(jiǎn),正確利用公式:$\sqrt{{a}^{2}}$=|a|是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

16.隨機(jī)從甲、乙兩塊試驗(yàn)田中各抽取100株麥苗測(cè)量高度,甲、乙兩塊試驗(yàn)田的平均數(shù)都是13,方差結(jié)果為:S2=36,S2=158,則小麥長(zhǎng)勢(shì)比較整齊的試驗(yàn)田是甲.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.風(fēng)馳汽車銷售公司12月份銷售某型號(hào)汽車,進(jìn)價(jià)為30萬(wàn)元/輛,售價(jià)為32萬(wàn)元/輛,當(dāng)月銷售量為x輛(x≤30,且x為正整數(shù)),銷售公司有兩種進(jìn)貨方案供選擇:
方案一:當(dāng)x不超過(guò)5時(shí),進(jìn)價(jià)不變;當(dāng)x超過(guò)5時(shí),每多售出1輛,所有售出的汽車進(jìn)價(jià)均降低0.1萬(wàn)元/輛(比如,當(dāng)x=8時(shí),該型號(hào)汽車的進(jìn)價(jià)為29.7萬(wàn)元/輛);
方案二:進(jìn)價(jià)始終不變,當(dāng)月每銷售1輛汽車,生產(chǎn)廠另外返還給銷售公司1萬(wàn)元/輛.
(1)按方案一進(jìn)貨:
①當(dāng)x=11時(shí),該型號(hào)汽車的進(jìn)價(jià)為29.4萬(wàn)元/輛;
②當(dāng)x>5時(shí),寫(xiě)出進(jìn)價(jià)y(萬(wàn)元/輛)與x(輛)的函數(shù)關(guān)系式;
(2)當(dāng)月該型號(hào)汽車的銷售量為多少輛時(shí),選用方案一和方案二銷售公司獲利相同?
(注:銷售利潤(rùn)=銷售價(jià)-進(jìn)價(jià)+返利).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若一個(gè)數(shù)的相反數(shù)為6,則這個(gè)數(shù)為( 。
A.$\frac{1}{6}$B.±6C.6D.-6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

1.地球上海洋面積約為361000000km2,將它精確到10000000km2可表示為3.61×108km2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知在△ABC中,AB=AC,DB=DC,點(diǎn)F是AB邊上一點(diǎn),點(diǎn)E在線段DF的延長(zhǎng)線上,∠BAE=∠BDF,點(diǎn)M在線段DF上,∠EBM=∠ABD.
(1)如圖1,當(dāng)∠ABC=45°時(shí),求證:AE=$\sqrt{2}$MD.
(2)如圖2,當(dāng)∠ABC=60°時(shí),延長(zhǎng)BM到點(diǎn)P,使MP=BM,AD與CP交于點(diǎn)N,若AB=$\sqrt{7}$,BE=$\sqrt{3}$.
①求證:BP⊥CP;②求AN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖,△ABC的外角∠DAC的平分線交BC邊的垂直平分線于P點(diǎn),PD⊥AB于D,PE⊥AC于E.若AB=6cm,AC=10cm,則AD=2cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.將邊長(zhǎng)為$\sqrt{5}$的正方形ABCD與邊長(zhǎng)$\sqrt{2}$為的正方形CEFG如圖擺放,連BG、DE.將正方形CEFG繞點(diǎn)C逆時(shí)針旋轉(zhuǎn).
(1)當(dāng)點(diǎn)G恰好落在直線DE上時(shí),連BE,則BE長(zhǎng)為$\sqrt{13}$.
(2)若直線BG、DE交于點(diǎn)H,點(diǎn)H到邊BC的距離的最大值為$\frac{\sqrt{30}+2\sqrt{5}}{5}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.計(jì)算:
(1)42-$\sqrt{64}$+$\root{3}{-27}$
(2)[(2x-y)(2x+y)+y(y-6x)]÷2x.

查看答案和解析>>

同步練習(xí)冊(cè)答案