精英家教網 > 初中數學 > 題目詳情
如圖,已知△ABC為等邊三角形,P為BC上一點,△APQ為等邊三角形.
(1)求證:AB∥CQ;
(2)AQ與CQ能否互相垂直?若能互相垂直,指出點P在BC上的位置,并給予證明;若AQ與CQ不能互相垂直,請說明理由.
分析:(1)根據等邊三角形性質得出AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,求出∠BAP=∠CAQ,根據SAS證△ABP≌△ACQ,推出∠ACQ=∠B=60°=∠BAC,根據平行線的判定推出即可.
(2)根據等腰三角形性質求出∠BAP=30°,求出∠BAQ=90°,根據平行線性質得出∠AQC=90°,即可得出答案.
解答:(1)證明:∵△ABC和△APQ是等邊三角形,
∴AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,
∴∠BAP=∠CAQ=60°-∠PAC,
在△ABP和△ACQ中
AB=AC
∠BAP=∠CAQ
AP=AQ

∴△ABP≌△ACQ(SAS),
∴∠ACQ=∠B=60°=∠BAC,
∴AB∥CQ.

(2)AQ與CQ能互相垂直,此時點P在BC的中點,
證明:∵當P為BC邊中點時,∠BAP=
1
2
∠BAC=30°,
∴∠BAQ=∠BAP+∠PAQ=30°+60°=90°,
又∵AB∥CQ,
∴∠AQC=90°,
即AQ⊥CQ.
點評:本題考查了等邊三角形性質,全等三角形的性質和判定,平行線性質和判定,等腰三角形性質的應用,主要考查學生的推理能力.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知△ABC為直角三角形,∠ACB=90°,AC=BC,點A、C在x軸上,點B坐標為(3精英家教網,m)(m>0),線段AB與y軸相交于點D,以P(1,0)為頂點的二次函數圖象經過點B、D.
(1)用m表示點A、D的坐標;
(2)求這個二次函數的解析式;
(3)點Q為二次函數圖象上點P至點B之間的一點,且點Q到△ABC邊BC、AC的距離相等,連接PQ、BQ,求四邊形ABQP的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知△ABC為直角三角形,∠ACB=90°,AC=BC,點A、C在x軸上,點B坐標為(3,m)(m>0),線段AB與y軸相交于點D,以P(1,0)為頂點的拋物線過點B、D.
(1)求點A的坐標(用m表示);
(2)求拋物線的解析式;
(3)設點Q為拋物線上點P至點B之間的一動點,連接PQ并延長交BC于點E,連接BQ并延長交AC于點F,試證明:FC(AC+EC)為定值.

查看答案和解析>>

科目:初中數學 來源: 題型:

25、如圖,已知△ABC為等邊三角形,D、F分別為BC、AB邊上的點,CD=BF,以AD為邊作等邊△ADE.
(1)△ACD和△CBF全等嗎?請說明理由;
(2)判斷四邊形CDEF的形狀,并說明理由;
(3)當點D在線段BC上移動到何處時,∠DEF=30°.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知△ABC為等邊三角形,D,E,F分別在邊BC,CA,AB上,且△DEF也是等邊三角形,除已知相等的邊以外,請你猜想還有哪些相等線段,并證明你的猜想是正確的.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知△ABC為等邊三角形,點D.E分別在BC.AC邊上,且AE=CD,AD與BE相交于點F.
(1)求證:△ABE≌△CAD;
(2)求∠AFE的度數.

查看答案和解析>>

同步練習冊答案