【題目】

已知:如圖,平行四邊形的對角線相交于點(diǎn),點(diǎn)在邊的延長線上,且,聯(lián)結(jié)

1)求證:;

2)如果,求證:

【答案】1)證明過程見解析;(2)證明過程見解析

【解析】

1)由平行四邊形的性質(zhì)得到BO=BD,由等量代換推出OE=BD,根據(jù)平行四邊形的判定即可得到結(jié)論;
2)根據(jù)等角的余角相等,得到∠CEO=CDE,推出△BDE∽△CDE,即可得到結(jié)論.

證明:(1)∵四邊形ABCD是平行四邊形,

BO=OD,

OE=OB,

OE=OD

∴∠OBE=OEB,∠OED=ODE

∵∠OBE+OEB+OED+ODE=180°,

∴∠BEO+DEO=BED=90°,

DEBE;

2)∵OECD

∴∠CEO+DCE=CDE+DCE=90°,

∴∠CEO=CDE,

OB=OE,

∴∠DBE=CDE,

∵∠BED=BED,
∴△BDE∽△DCE,

BDCE=CDDE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+bk≠0)的圖象與x軸,y軸分別交于A(﹣9,0)、B0,6),過點(diǎn)C2,0)作直線lBC垂直,點(diǎn)E在直線l位于x軸上方的部分.

1)求一次函數(shù)y=kx+bk≠0)的解析式;

2)求直線l的解析式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=6cm,BC=12cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB邊向點(diǎn)B1cm/秒的速度移動,同時(shí),點(diǎn)Q從點(diǎn)B出發(fā)沿BC邊向點(diǎn)C2cm/秒的速度移動。如果PQ兩點(diǎn)在分別到達(dá)B.C兩點(diǎn)后就停止移動,回答下列問題:

(1)運(yùn)動開始后第幾秒時(shí), PBQ的面積等于8?

(2)當(dāng)t=時(shí),試判斷DPQ的形狀。

(3)計(jì)算四邊形DPBQ的面積,并探索一個(gè)與計(jì)算結(jié)果有關(guān)的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程(c+a)x2+2bx+(c-a)=0,其中a、b、c分別為△ABC三邊的長.

(1)如果方程有兩個(gè)相等的實(shí)數(shù)根,試判斷△ABC的形狀并說明理由;

(2)已知a:b:c=3:4:5,求該一元二次方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長是16,點(diǎn)E在邊AB上,AE=3,點(diǎn)F是邊BC上不與點(diǎn)B、C重合的一個(gè)動點(diǎn),把△EBF沿EF折疊,點(diǎn)B落在B′處,若△CDB′恰為等腰三角形,則DB′的長為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場一種商品的進(jìn)價(jià)為每件30元,售價(jià)為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價(jià)促銷.

(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價(jià)降至每件32.4元,求兩次下降的百分率;

(2)經(jīng)調(diào)查,若每降價(jià)0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx+n與x軸正半軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C.

(1)利用直尺和圓規(guī),作出拋物線y=x2+mx+n的對稱軸(尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)若△OBC是等腰直角三角形,且其腰長為3,求拋物線的解析式;

(3)在(2)的條件下,點(diǎn)P為拋物線對稱軸上的一點(diǎn),則PA+PC的最小值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個(gè)三角形重疊部分的面積為1cm2,則它移動的距離AA′等于( )

A. 0.5cm B. 1cm C. 1.5cm D. 2cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,以下結(jié)論:①abc0;②4acb2;③2a+b0;④其頂點(diǎn)坐標(biāo)為(,﹣2);⑤當(dāng)x時(shí),yx的增大而減小;⑥a+b+c0正確的有( 。

A. 3個(gè) B. 4個(gè) C. 5個(gè) D. 6個(gè)

查看答案和解析>>

同步練習(xí)冊答案