如圖,已知拋物線軸負半軸交于點,與軸正半軸交于點,且.

(1) 求的值;

(2) 若點在拋物線上,且四邊形是平行四邊形,試求拋物線的解析式;

(3) 在(2)的條件下,作∠OBC的角平分線,與拋物線交于點P,求點P的坐標.

 


解:(1)由題意得:點B的坐標為,其中         (1分)

         ∵,點軸的負半軸上,∴點的坐標為  (1分)

         ∵點在拋物線上,∴       (1分)

         ∴    (因為)                               (1分)

  (2)∵四邊形是平行四邊形

     ∴,又軸,點B的坐標為

     ∴點的坐標為                                   (1分)

     又點在拋物線上,

     ∴(舍去)             (1分)

       又 由(1)知:

       ∴.   拋物線的解析式為.     (2分)

     (3)過點軸,,垂足分別為、

     ∵ 平分     ∴              (1分)

     設(shè)點的坐標為

     ∴                      (1分)

      解得:(舍去)     (1分)

    所以,點的坐標為                   (1分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與軸交于點,,與軸交于點

(1)求拋物線的解析式及其頂點的坐標;
(2)設(shè)直線軸于點.在線段的垂直平分線上是否存在點,使得點到直線的距離等于點到原點的距離?如果存在,求出點的坐標;如果不存在,請說明理由;
(3)過點軸的垂線,交直線于點,將拋物線沿其對稱軸平移,使拋物線與線段總有公共點.試探究:拋物線向上最多可平移多少個單位長度?向下最多可平移多少個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知拋物線軸的兩個交點為A、B,與軸交于點C

(1)求A、B、C三點的坐標?
(2)用配方法求該二次函數(shù)的對稱軸和頂點坐標?
(3)若坐標平面內(nèi)的點M,使得以點M和三點A、B、C為頂點的四邊形是平行四邊形,求點M的坐標?(直接寫出M的坐標,不用說明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年陜西省西安音樂學(xué)院初一上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

如圖,已知拋物線與軸交于點,與y軸交于點

(1)求拋物線的解析式及其頂點D的坐標;
(2)設(shè)直線CD交軸于點E.在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標;如果不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年陜西省西安音樂學(xué)院初一上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

如圖,已知拋物線與軸交于點,,與y軸交于點

(1)求拋物線的解析式及其頂點D的坐標;

(2)設(shè)直線CD交軸于點E.在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標;如果不存在,請說明理由

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省黃岡市初二上學(xué)期期末數(shù)學(xué)卷 題型:解答題

 

如圖,已知拋物線軸的兩個交點為A、B,與軸交于點C

(1)求A、B、C三點的坐標?

(2)用配方法求該二次函數(shù)的對稱軸和頂點坐標?

(3)若坐標平面內(nèi)的點M,使得以點M和三點A、B、C為頂點的四邊形是平行四邊形,求點M的坐標?(直接寫出M的坐標,不用說明)

 

查看答案和解析>>

同步練習(xí)冊答案