如圖所示,在邊長為4的正方形ABCD的邊上有一個(gè)動(dòng)點(diǎn)P,從點(diǎn)B出發(fā),沿BC運(yùn)動(dòng)到點(diǎn)C,設(shè)點(diǎn)P(不與B、C重合)運(yùn)動(dòng)的路程為x,梯形APCD的面積為y,則y與x之間的函數(shù)關(guān)系式是
16-2x
16-2x
,其中自變量x的取值范圍是
0<x<4
0<x<4
分析:四邊形APCD的面積=□ABCD的面積-△ABP的面積,有了正方形的邊長和BP的長,就能表示出正方形和△ABP的面積,進(jìn)而可得出y與x的函數(shù)關(guān)系式.由于P從B運(yùn)動(dòng)到C,所以自變量的取值范圍應(yīng)該在0-4之間.
解答:解:∵S四邊形APCD=S□ABCD-S△ABP,
∴y=16-
1
2
x×4=16-2x(0<x<4);
故答案是:16-2x.
點(diǎn)評(píng):本題考查了一次函數(shù)與一元一次方程的應(yīng)用,解題的關(guān)鍵是列出函數(shù)關(guān)系式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在邊長為a的正方形中,剪去一個(gè)邊長為b的小正方形(a>b),將余下部分拼成一個(gè)梯形,根據(jù)兩個(gè)圖形陰影部分面積的關(guān)系,可以得到一個(gè)關(guān)于a、b的恒等式為( 。
精英家教網(wǎng)
A、(a-b)2=a2-2ab+b2B、(a+b)2=a2+2ab+b2C、a2-b2=(a+b)(a-b)D、a2+ab=a(a+b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖所示,在邊長為a的正方形中挖去一個(gè)邊長為b的小正方形(a>b),再把剩余的部分剪拼成一個(gè)矩形,通過計(jì)算圖形(陰影部分的面積),驗(yàn)證了一個(gè)等式是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在邊長為1的網(wǎng)格中作出△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°后的圖形△A′B′C′,并計(jì)算對(duì)應(yīng)點(diǎn)B和B′之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在邊長為1的網(wǎng)格中作出△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°,再向下平移2格后的圖形△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在邊長為1的網(wǎng)格中作出△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°,再向下平移2格后的圖形△A′B′C′.

查看答案和解析>>

同步練習(xí)冊答案