定義:我們把三角形被一邊中線分成的兩個三角形叫做“友好三角形”
性質:如果兩個三角形是“友好三角形”,那么這兩個三角形的面積相等,
理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.
應用:如圖②,在矩形ABCD中,AB=4,BC=6,點E在AD上,點F在BC上,AE=BF,AF與BE交于點O,
(1)求證:△AOB和△AOE是“友好三角形”;
(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積,
探究:在△ABC中,∠A=30°,AB=4,點D在線段AB上,連接CD,△ACD和△BCD是“友好三角形”,將△ACD沿CD所在直線翻折,得到△CD與△ABC重合部分的面積等于△ABC面積的,請直接寫出△ABC的面積.
科目:初中數(shù)學 來源: 題型:
1 | 4 |
查看答案和解析>>
科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(遼寧沈陽卷)數(shù)學(解析版) 題型:解答題
定義:我們把三角形被一邊中線分成的兩個三角形叫做“友好三角形”.
性質:如果兩個三角形是“友好三角形”,那么這兩個三角形的面積相等.
理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.
應用:如圖②,在矩形ABCD中,AB=4,BC=6,點E在AD上,點F在BC上,AE=BF,AF與BE交于點O.
(1)求證:△AOB和△AOE是“友好三角形”;
(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積.
探究:在△ABC中,∠A=30°,AB=4,點D在線段AB上,連接CD,△ACD和△BCD是“友好三角形”,將△ACD沿CD所在直線翻折,得到△A′CD,若△A′CD與△ABC重合部分的面積等于△ABC面積的,請直接寫出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源:2013年遼寧省沈陽市中考數(shù)學試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
定義:我們把三角形被一邊中線分成的兩個三角形叫做“友好三角形”
性質:如果兩個三角形是“友好三角形”,那么這兩個三角形的面積相等,
理解:如圖①,在中,CD是AB邊上的中線,那么和是“友好三角形”,并且。
應用:如圖②,在矩形ABCD中,AB=4,BC=6,點E在AD上,點F在BC上,AE=BF,AF與BE交于點O,
(1) 求證: 和是“友好三角形”;
(2) 連接OD,若和是“友好三角形”,求四邊形CDOF的面積,
探究:在中,,AB=4,點D在線段AB上,連接CD,和是“友好三角形”,將沿CD所在直線翻折,得到與重合部分的面積等于面積的,請直接寫出的面積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com