【題目】如圖,以AB為斜邊的Rt△ABC的每條邊為邊作三個正方形,分別是正方形ABMN,正方形BCPQ,正方形ACEF,且邊EF恰好經(jīng)過點N.若S3=S4=5,則S1+S5=_____.(注:圖中所示面積S表示相應(yīng)封閉區(qū)域的面積,如S3表示△ABC的面積)
【答案】5
【解析】
如圖,連接MQ,作MG⊥EC于G,設(shè)PC交BM于T,MN交EC于R.證明△ABC≌△MBQ(SAS),推出∠ACB=∠BQM=90°,由∠PQB=90°,推出M,P,Q共線,由四邊形CGMP是矩形,推出MG=PC=BC,證明△MGR≌△BCT(AAS),推出MR=BT,由MN=BM,NR=MT,可證△NRE≌MTP,推出S1+S5=S3=5.
解:如圖,連接MQ,作MG⊥EC于G,設(shè)PC交BM于T,MN交EC于R.
∵∠ABM=∠CBQ=90°,
∴∠ABC=∠MBQ,
∵BA=BM,BC=BQ,
∴△ABC≌△MBQ(SAS),
∴∠ACB=∠MQB=90°,
∵∠PQB=90°,
∴M,P,Q共線,
∵四邊形CGMP是矩形,
∴MG=PC=BC,
∵∠BCT=∠MGR=90°,∠BTC+∠CBT=90°,∠BQM+∠CBT=90°,
∴∠MRG=∠BTC,
∴△MGR≌△BCT(AAS),
∴MR=BT,
∵MN=BM,
∴NR=MT,
∵∠MRG=∠BTC,
∴∠NRE=∠MTP,
∵∠E=∠MPT=90°,則△NRE≌MTP(AAS),
∴S1+S5=S3=5.
故答案為:5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,印刷一張矩形的包裝紙,印刷部分的長為8cm,寬為4cm,上下空白寬各cm,左右空白寬各xcm,四周空白處的面積為Scm2.
(1)求S與x的關(guān)系式;
(2)當(dāng)四周空白處的面積為18cm2時,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進行了探究,探究過程如下,請補充完整:
(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應(yīng)值列表如下:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | ||
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中,m= .
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點,并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
(3)探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有 個交點,所以對應(yīng)的方程x2﹣2|x|=0有 個實數(shù)根;
②方程x2﹣2|x|=有 個實數(shù)根;
③關(guān)于x的方程x2﹣2|x|=a有4個實數(shù)根時,a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點D是BC邊上的一動點(不與B、C重合),∠ADE=∠B=∠α,DE交AB于點E,且tan∠α=0.75,有以下的結(jié)論:
①△DBE∽△ACD;②△ADE∽△ACD;③△BDE為直角三角形時,BD為8或3.5;
④0<BE≤5.其中正確的結(jié)論是_______(填入正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標(biāo)桿BC,再在AB的延長線上選擇點D豎起標(biāo)桿DE,使得點E與點C、A共線.
已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據(jù)相關(guān)測量信息,求河寬AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB經(jīng)過點A(,)和B (2,0),且與y軸交于點D,直線OC與AB交于點C,且點C的橫坐標(biāo)為.
(1)求直線AB的解析式;
(2)連接OA,試判斷△AOD的形狀;
(3)動點P從點C出發(fā)沿線段CO以每秒1個單位長度的速度向終點O運動,運動時間為t秒,同時動點Q從點O出發(fā)沿y軸的正半軸以相同的速度運動,當(dāng)點Q到達點D時,P,Q同時停止運動.設(shè)PQ與OA交于點M,當(dāng)t為何值時,△OPM為等腰三角形?求出所有滿足條件的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場花9萬元從廠家購買A型和B型兩種型號的電視機共50臺,其中A型電視機的進價為每臺1500元,B型電視機的進價為每臺2500元.
(1)求該商場購買A型和B型電視機各多少臺?
(2)若商場A型電視機的售價為每臺1700元,B型電視機的售價為每臺2800元,不考慮其他因素,那么銷售完這50臺電視機該商場可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端到地面距離為2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端到地面距離為2米,求小巷的寬度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com