已a、b、c分別為△ABC中∠A、∠B、∠C的對邊,若關于x的方程(b+c)x2-2ax+c-b=0有兩個相等的實根且sinB•cosA-cosB•sinA=0,則△ABC的形狀為( )
A.直角三角形
B.等腰三角形
C.等邊三角形
D.等腰直角三角形
【答案】分析:由于關于x的方程(b+c)x2-2ax+c-b=0有兩個相等的實根,所以判別式(-2a)2-4(b+c)(c-b)=0,解可得:a2+b2-c2=0,即a2+b2=c2;
又已知sinB•cosA-cosB•sinA=0,可得tanA=tanB,故A=B.
根據這兩個條件可以判斷△ABC的形狀為等腰直角三角形.
解答:解:∵關于x的方程(b+c)x2-2ax+c-b=0有兩個相等的實根,
∴(-2a)2-4(b+c)(c-b)=0,
化簡,得a2+b2-c2=0,
即a2+b2=c2.
又∵sinB•cosA-cosB•sinA=0,
∴tanA=tanB,
故∠A=∠B,
∴a=b,
所以△ABC的形狀為等腰直角三角形.
故選D.
點評:主要考查了等腰直角三角形的性質和一元二次方程判別式與根的關系,這些性質和規(guī)律要求學生熟練掌握.