【題目】請認真閱讀下面的數學小探究,完成所提出的問題
(1)探究1,如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=3,將邊 AB繞點B順時針旋轉90°得到線段BD,連接CD,過點D作BC邊上的高DE,則DE與BC的數量關系是 . △BCD的面積為 .
(2)探究2,如圖②,在一般的Rt△ABC中,∠ACB=90°,BC=,將邊AB繞點B順時針旋轉90°得到線段BD,連接CD,請用含的式子表示△BCD的面積,并說明理由.
【答案】(1)DE=BC,4.5;(2)
【解析】
(1)證明△ACB≌△DEB,根據全等三角形的性質得到DE=AC=BC=3,根據三角形的面積公式計算;
(2)作DG⊥CB交CB的延長線于G,證明△ACB≌△BGD,得到DG=BC=a,根據三角形的面積公式計算;
(1)∵△ABC是等腰直角三角形,
∴CA=CB,∠A=∠ABC=45°,
由旋轉的性質可知,BA=BD,∠ABD=90°,
∴∠DBE=45°,
在△ACB和△DEB中,
,
∴△ACB≌△DEB(AAS)
∴DE=AC=BC=3,
∴;
故答案為:DE=BC,;
(2)作DG⊥CB交CB的延長線于G,
∵∠ABD=90°,
∴∠ABC+∠DBG=90°,又∠ABC+∠A=90°,
∴∠A=∠DBG,
在△ACB和△BGD中,
,
∴△ACB≌△BGD(AAS),
∴DG=BC=,
∴.
科目:初中數學 來源: 題型:
【題目】如圖,點D在△ABC的邊AC上,要判斷△ADB與△ABC相似,添加一個條件,不正確的是( )
A.∠ABD=∠CB.∠ADB=∠ABCC.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在平面直角坐標系中,點,以線段為直徑作圓,圓心為,直線交于點,連接.
(1)求證:直線是的切線;
(2)點為軸上任意一動點,連接交于點,連接:
①當時,求所有點的坐標 (直接寫出);
②求的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某企業(yè)生產并銷售某種產品,整理出該商品在第()天的售價與函數關系如圖所示,已知該商品的進價為每件30元,第天的銷售量為件.
(1)試求出售價與之間的函數關系是;
(2)請求出該商品在銷售過程中的最大利潤;
(3)在該商品銷售過程中,試求出利潤不低于3600元的的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市抽獎規(guī)則如下:在一個不透明的盒子里裝有分別標有數字1、2、3、4的4個小球,它們的形狀、大小、質地完全相同,顧客先從盒子里隨機取出一個小球,記下小球上標有的數字,然后把小球放回盒子并攪拌均勻,再從盒子中隨機取出一個小球,記下小球上標有的數字,并計算兩次記下的數字之和若兩次所得的數字之和為8,則可獲得50元代金券一張:若所得的數字之和為6,則可獲得30元代金券一張;若所得的數字之和為5,則可獲得15元代金券一張:其他情況都不中獎.
(1)請用列表或樹狀圖的方法,把抽獎一次可能出現的結果表示出來;
(2)假如你參加了該超市開業(yè)當天的一次抽獎活動,求能中獎的概率P.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x+b(b>2)與x軸,y軸分別交于H,G兩點,邊長為2的正方形OABC的邊OA,OC分別在x軸,y軸上,點B在第一象限,正方形OABC繞點B逆時針旋轉,OA的對應邊O'A'恰好落在直線GH上,則b的值為( 。
A.4B.C.5D.6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中(AD>AB),點E是BC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結論中,不一定正確的是( 。
A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與直線相交于,兩點,且拋物線經過點
(1)求拋物線的解析式.
(2)點是拋物線上的一個動點(不與點點重合),過點作直線軸于點,交直線于點.當時,求點坐標;
(3)如圖所示,設拋物線與軸交于點,在拋物線的第一象限內,是否存在一點,使得四邊形的面積最大?若存在,請求出點的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com