【題目】已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,連接AE,BD交于點(diǎn)O,AE與DC交于點(diǎn)M,BD與AC交于點(diǎn)N.
(1)如圖1,求證:AE=BD;
(2)如圖2,若AC=DC,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖2中四對(duì)全等的直角三角形.

【答案】
(1)證明:∵△ACB和△DCE都是等腰直角三角形,

∠ACB=∠DCE=90°,

∴AC=BC,DC=EC,

∴∠ACB+∠ACD=∠DCE+∠ACD,

∴∠BCD=∠ACE,

在△ACE與△BCD中,

∴△ACE≌△BCD(SAS),

∴AE=BD,


(2)解:∵AC=DC,

∴AC=CD=EC=CB,

△ACB≌△DCE(SAS);

由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC

∴∠DOM=90°,

∵∠AEC=∠CAE=∠CBD,

∴△EMC≌△BCN(ASA),

∴CM=CN,

∴DM=AN,

△AON≌△DOM(AAS),

∵DE=AB,AO=DO,

∴△AOB≌△DOE(HL)


【解析】(1)根據(jù)全等三角形的性質(zhì)即可求證△ACE≌△BCD,從而可知AE=BD;(2)根據(jù)條件即可判斷圖中的全等直角三角形;
【考點(diǎn)精析】本題主要考查了等腰直角三角形的相關(guān)知識(shí)點(diǎn),需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小華在研究函數(shù)y1=x與y2=2x圖象關(guān)系時(shí)發(fā)現(xiàn):如圖所示,當(dāng)x=1時(shí),y1=1,y2=2;當(dāng)x=2時(shí),y1=2,y2=4;…;當(dāng)x=a時(shí),y1=a,y2=2a.他得出如果將函數(shù)y1=x圖象上各點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,就可以得到函數(shù)y2=2x的圖象.類比小華的研究方法,解決下列問題:
(1)如果函數(shù)y=3x圖象上各點(diǎn)橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得到的函數(shù)圖象的表達(dá)式為;
(2)①將函數(shù)y=x2圖象上各點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>倍,得到函數(shù)y=4x2的圖象; ②將函數(shù)y=x2圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,得到圖象的函數(shù)表達(dá)式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,既是中心對(duì)稱圖又是軸對(duì)稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】咸寧市某中學(xué)為了解本校學(xué)生對(duì)新聞、體育、動(dòng)畫、娛樂四類電視節(jié)目的喜愛情況,隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩幅不完整統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖,“體育”對(duì)應(yīng)扇形的圓心角是度;
(2)根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校2000名學(xué)生中喜愛“娛樂”的有人;
(3)在此次問卷調(diào)查中,甲、乙兩班分別有2人喜愛新聞節(jié)目,若從這4人中隨機(jī)抽取2人去參加“新聞小記者”培訓(xùn),請(qǐng)用列表法或畫樹狀圖的方法求所抽取的2人來自不同班級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周日,小濤從家沿著一條筆直的公路步行去報(bào)亭看報(bào),看了一段時(shí)間后,他按原路返回家中,小濤離家的距離y(單位:m)與他所用的時(shí)間t(單位:min)之間的函數(shù)關(guān)系如圖所示,下列說法中正確的是(
A.小濤家離報(bào)亭的距離是900m
B.小濤從家去報(bào)亭的平均速度是60m/min
C.小濤從報(bào)亭返回家中的平均速度是80m/min
D.小濤在報(bào)亭看報(bào)用了15min

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的頂點(diǎn)A,B在函數(shù)y= (x>0)的圖象上,點(diǎn)C,D分別在x軸,y軸的正半軸上,當(dāng)k的值改變時(shí),正方形ABCD的大小也隨之改變.
①當(dāng)k=2時(shí),正方形A′B′C′D′的邊長(zhǎng)等于
②當(dāng)變化的正方形ABCD與(1)中的正方形A′B′C′D′有重疊部分時(shí),k的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角坐標(biāo)系xoy中,直線l:y=kx+b交x軸,y軸于點(diǎn)E,F(xiàn),點(diǎn)B的坐標(biāo)是(2,2),過點(diǎn)B分別作x軸、y軸的垂線,垂足為A、C,點(diǎn)D是線段CO上的動(dòng)點(diǎn),以BD為對(duì)稱軸,作與△BCD或軸對(duì)稱的△BC′D.

(1)當(dāng)∠CBD=15°時(shí),求點(diǎn)C′的坐標(biāo).
(2)當(dāng)圖1中的直線l經(jīng)過點(diǎn)A,且k=﹣ 時(shí)(如圖2),求點(diǎn)D由C到O的運(yùn)動(dòng)過程中,線段BC′掃過的圖形與△OAF重疊部分的面積.
(3)當(dāng)圖1中的直線l經(jīng)過點(diǎn)D,C′時(shí)(如圖3),以DE為對(duì)稱軸,作于△DOE或軸對(duì)稱的△DO′E,連結(jié)O′C,O′O,問是否存在點(diǎn)D,使得△DO′E與△CO′O相似?若存在,求出k、b的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O直徑,點(diǎn)D為AB下方⊙O上一點(diǎn),點(diǎn)C為弧ABD中點(diǎn),連接CD,CA.
(1)求證:∠ABD=2∠BDC;
(2)過點(diǎn)C作CH⊥AB于H,交AD于E,求證:EA=EC;
(3)在(2)的條件下,若OH=5,AD=24,求線段DE的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,點(diǎn)M是AC的中點(diǎn),以AB為直徑做⊙O分別交AC,BM于點(diǎn)D、E.
(1)求證:∠MDE=∠MED;
(2)填空: ①若AB=6,當(dāng)DM=2AD時(shí),DE=
②連接OD、OE,當(dāng)∠C的度數(shù)為時(shí),四邊形ODME是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案