(1)如圖,ABCD是正方形,G是BC上(除端點(diǎn)外)的任意一點(diǎn),DE⊥AG于點(diǎn)E,BF⊥AG于點(diǎn)F.
求證:AE=BF
(2)如圖,□ABCD中,的平分線交邊于,的平分線 交于,交于.若AB=3,BC=5,求EG的長(zhǎng)。
(1)通過(guò)證明△ABF≌△DAE,從而得出AE=BF (2)∴EG=1
【解析】
試題分析:(1)證明邊相等,首選證明全等三角形,由正方形找出相關(guān)的條件即可。
證明:∵ABCD是正方形,
∴AB=DA、AB⊥AD。
∵BF⊥AG、DE⊥AG,∴∠AFB=∠AED=90°
又∵∠BAF+∠DAE=90°,∠BAF+∠ABF=90°,
∴∠ABF=∠DAE
∴△ABF≌△DAE
∴AE=BF
(2)求邊的長(zhǎng)度,有三角形中位線,直角三角形斜邊上的中線,以及等腰三角形的等角對(duì)等邊,以及最常用的邊的等量代換,這些都是考慮的方法。
解:∵BG平分∠ABC
∴∠ABG=∠CBG
∵□ABCD
∴AD∥BC
∴∠AGB=∠CBG
∴∠ABG=∠AGB
∴AG=AB=3
同理:DE="DC=3"
∴EG=AG+DE-AD=1
考點(diǎn):平行四邊的性質(zhì)
點(diǎn)評(píng):該題是?碱},主要考查學(xué)生對(duì)各種平行四邊形性質(zhì)的掌握程度,除了正方形和一般的平行四邊形還有矩形、菱形都是要求熟記的內(nèi)容。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com