如圖,設(shè)P是等邊三角形ABC內(nèi)的一點(diǎn),PA=1,PB=2,PC=數(shù)學(xué)公式,將△ABP繞點(diǎn)A按逆時針方向旋轉(zhuǎn),使AB與AC重合,點(diǎn)P旋轉(zhuǎn)到P?外,則sin∠PCP′的值是________(不取近似值).


分析:根據(jù)題意,旋轉(zhuǎn)角度為60°.易證明△APP′是等邊三角形,PP′=1;
由CP′=BP=2,PC=可證明△PCP′是直角三角形,且∠PP′C=90°.
根據(jù)三角函數(shù)的定義求解.
解答:∵△ABC為等邊三角形,∴∠BAC=60°.
根據(jù)旋轉(zhuǎn)的性質(zhì),有
∠PAP′=60°,AP′=AP=1,CP′=BP=2.
∴△APP′是等邊三角形,PP′=1.
在△PCP′中,
PC=,PP′=1,CP′=2.
∴PC2=P′P2+P′C2
∴△PCP′是直角三角形,且∠PP′C=90°.
∴sin∠PCP′=
點(diǎn)評:此題考查了旋轉(zhuǎn)的性質(zhì)及直角三角形的判定和三角函數(shù)等知識點(diǎn),有一定的綜合性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點(diǎn)E為AB的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動且始終保持和AB平行的伸縮橫桿.
(1)當(dāng)MN和AB之間的距離為0.5米時,求此時△EMN的面積;
(2)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
(3)請你探究△EMN的面積S(平方米)有無最大值?若有,請求出這個最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•萊蕪)某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點(diǎn)E為AB的中點(diǎn).MN是可以沿設(shè)施邊框上下滑動且始終保持和AB平行的伸縮橫桿,△EMN是隨MN滑動而變化的三角通風(fēng)窗(陰影部分均不通風(fēng)).
(1)當(dāng)MN和AB之間的距離為0.5米時,求此時△EMN的面積.
(2)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù).
(3)請你探究△EMN的面積S(平方米)有無最大值?若有,請求出這個最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年山東省萊蕪市中考數(shù)學(xué)試卷(解析版) 題型:解答題

某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點(diǎn)E為AB的中點(diǎn).MN是可以沿設(shè)施邊框上下滑動且始終保持和AB平行的伸縮橫桿,△EMN是隨MN滑動而變化的三角通風(fēng)窗(陰影部分均不通風(fēng)).
(1)當(dāng)MN和AB之間的距離為0.5米時,求此時△EMN的面積.
(2)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù).
(3)請你探究△EMN的面積S(平方米)有無最大值?若有,請求出這個最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點(diǎn)E為AB的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動且始終保持和AB平行的伸縮橫桿.
(1)當(dāng)MN和AB之間的距離為0.5米時,求此時△EMN的面積;
(2)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
(3)請你探究△EMN的面積S(平方米)有無最大值?若有,請求出這個最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(24):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點(diǎn)E為AB的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動且始終保持和AB平行的伸縮橫桿.
(1)當(dāng)MN和AB之間的距離為0.5米時,求此時△EMN的面積;
(2)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
(3)請你探究△EMN的面積S(平方米)有無最大值?若有,請求出這個最大值;若沒有,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案