如圖所示,∠BAC=100°,若MP、NQ分別垂直平分AB、AC.若BC=10cm,則△APQ的周長(zhǎng)為
10cm
10cm
,∠PAQ=
20°
20°
分析:由MP、NQ分別垂直平分AB、AC,根據(jù)線段垂直平分線的性質(zhì),可得AP=BP,AQ=CQ,繼而求得△APQ的周長(zhǎng)=BC;
由三角形內(nèi)角和定理,可求得∠B+∠C,又由等腰三角形的性質(zhì),可求得∠BAP+∠CAQ,繼而求得答案.
解答:解:∵M(jìn)P、NQ分別垂直平分AB、AC,
∴AP=BP,AQ=CQ,
∵BC=10cm,
∴△APQ的周長(zhǎng)為:AP+PQ+AQ=BP+PQ+CQ=BC=10(cm);

∵∠BAC=100°,
∴∠B+∠C=80°,
∵AP=BP,AQ=CQ,
∴∠BAP=∠B,∠CAQ=∠C,
∴∠BAP+∠CAQ=∠B+∠C=80°,
∴∠PAQ=∠BAC-(∠BAP+∠CAQ)=20°.
故答案為:10cm,20°.
點(diǎn)評(píng):此題考查了線段垂直平分線的性質(zhì)以及等腰三角形的性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,∠BAC=90°,O為AB上一點(diǎn),以O(shè)為圓心,
1
2
OA長(zhǎng)為半徑作⊙O,當(dāng)AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到與⊙O相切時(shí),AC旋轉(zhuǎn)過(guò)的角度α(0°<α<180°)為(  )
A、30°B、60°
C、60°或120°D、120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖所示,∠BAC=90°,AB=AC,過(guò)點(diǎn)A任意作一直線DE,且作CE⊥ED,BD⊥ED,經(jīng)測(cè)量CE=2cm,BD=4cm,則DE的長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,∠BAC是⊙O的圓周角,則∠BAC+∠OCB=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖所示,∠BAC=∠ABD,AC=BD,點(diǎn)O是AD、BC的交點(diǎn),點(diǎn)E是AB的中點(diǎn).
(1)△CAB與△DAB全等嗎?請(qǐng)說(shuō)明理由;
(2)試判斷OE和AB的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖所示,∠BAC=∠ABD,AC=BD,點(diǎn)O是AD、BC的交點(diǎn),
求證:△AOB是等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案