【題目】已知方程組的解x為非正數(shù),y為負數(shù).
(1)求a的取值范圍;
(2)化簡∣a-3∣+∣a+2∣;
(3)在a的取值范圍內(nèi),m是最大的整數(shù),n是最小的整數(shù),求(m+n)m-n的值;
(4)在a的取值范圍內(nèi),當(dāng)a取何整數(shù)時,不等式2ax+x>2a+1的解為x<1.
【答案】(1)-2<a≤3;(2)5;(3)16;(4)a=-1.
【解析】
(1)先解出含參數(shù)a的不等式組得,再根據(jù)x,y的取值確定a的取值范圍;(2)根據(jù)a的取值范圍來進行絕對值的化簡即可;(3)根據(jù)a的取值范圍,求出m, n 借此可以化簡式子;(4)由不等式的解為x<1知2a+10,再結(jié)合a的取值范圍內(nèi),即可求出a的取值,再求出其整數(shù).
解:(1)解方程組得
由題意,得
解得.
(2)=3-a+(a+2)=5
(3)在內(nèi)的最大整數(shù)m=3,,最小整數(shù)n=-1,
所以(m+n)m-n=(3-1)3-(-1) =24=16.
(4)因為不等式2ax+x>2a+1的解為x<1,所以2a+10且.
所以a取范圍內(nèi)的整數(shù),即a=-1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,經(jīng)過原點的拋物線可以用y=ax2+bx(a≠0)表示,對于這樣的拋物線:
(1)當(dāng)拋物線經(jīng)過點(﹣2,0)和(﹣1,3)時,求拋物線的表達式;
(2)當(dāng)拋物線的頂點在直線y=﹣2x上時,求b的值;
(3)如圖,現(xiàn)有一組這樣的拋物線,它們的頂點A1、A2、…,An在直線y=﹣2x上,橫坐標(biāo)依次為﹣1,﹣2,﹣3,…,﹣n(n為正整數(shù),且n≤12),分別過每個頂點作x軸的垂線,垂足記為B1、B2 , …,Bn , 以線段AnBn為邊向左作正方形AnBnCnDn , 如果這組拋物線中的某一條經(jīng)過點Dn , 求此時滿足條件的正方形AnBnCnDn的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10, = = ,點E是點D關(guān)于AB的對稱點,M是AB上的一動點,下列結(jié)論:①∠BOE=60°;②∠CED= ∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述結(jié)論中正確的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“植樹節(jié)”期間,小王、小李兩人想通過摸球的方式來決定誰去參加學(xué)校植樹活動,規(guī)則如下:在兩個盒子內(nèi)分別裝入標(biāo)有數(shù)字1,2,3,4的四個和標(biāo)有數(shù)字1,2,3的三個完全相同的小球,分別從兩個盒子中各摸出一個球,如果所摸出的球上的數(shù)字之和小于6,那么小王去,否則就是小李去.
(1)用樹狀圖或列表法求出小王去的概率;
(2)小李說:“這種規(guī)則不公平”,你認同他的說法嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足為點O.
(1)求證:四邊形ABCD是菱形;
(2)若CD=3,BD=2 ,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC,BD交于點O,過點A作EA⊥CA交DB的延長線于點E,若AB=3,BC=4,則 的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分別為D,E,F為BC中點,BE與DF,DC分別交于點G,H,∠ABE=∠CBE.
(1)線段BH與AC相等嗎?若相等給予證明,若不相等請說明理由;
(2)求證:BG2﹣GE2=EA2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,CD是AB邊上的高,AC=4,BC=3,DB=
求:(1)求AD的長;
(2)△ABC是直角三角形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形 ABC 是由三角形 ABC 經(jīng)過某種平移得到的,點 A 與點 A ,點 B與點B ,點C與點C分別對應(yīng),且這六個點都在格點上,觀察各點以及各點坐標(biāo)之間的關(guān)系,解答下列問題:
①分別寫出點 B 和點B 的坐標(biāo),并說明三角形ABC 是由三角形 ABC 經(jīng)過怎樣的平移得到的;
②連接 BC ,直接寫出 ∠ CBC 與∠ BCO 之間的數(shù)量關(guān)系 ;
③若點 M(a-1,2b﹣5)是三角形 ABC 內(nèi)一點,它隨三角形 ABC 按(1)中方式平移后得到的對應(yīng)點為點 N(2a﹣7,4-b),求 a 和 b 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com