如圖①.將菱形紙片AB(E)CD(F)沿對角線BD(EF)剪開,得到△ABD和△ECF.固定△ABD,并把△ABD與△ECF疊放在—起.

  (1)操作:如圖②,將△ECF的頂點(diǎn)F固定在△ABD的BD邊上的中點(diǎn)處,△ECF繞點(diǎn)F在BD邊上方左右旋轉(zhuǎn),設(shè)旋轉(zhuǎn)時FC交BA于點(diǎn)H(H點(diǎn)不與B點(diǎn)重合),F(xiàn)E交DA于點(diǎn)G(G點(diǎn)不與D點(diǎn)重合).

    求證:

 (2)操作:如圖③,△ECF的頂點(diǎn)F在△ABD的BD邊上滑動(F點(diǎn)不與B、D點(diǎn)重合),

    且CF始終經(jīng)過點(diǎn)A,過點(diǎn)A作AG∥CE。交FE于點(diǎn)G,連接DG。

  探究:_________.請予證明.

證明:根據(jù)圖②操作有∠B=∠D=∠CFE, BF=DF

在△DFG中,∠D+∠DFG+DGF=180°,而∠DFG+∠CFE+BFH=180°

∴ ∠BFH=∠DGF, 又∠B=∠D

∴△BFH∽△DGF   ∴=    由于BF=DF    ∴BF2=BH·DG

解:探究得出:FD+DG=BD

證明:∵AG∥CE, ∴∠FAG=∠C,∠FGA=∠E

∵∠CFE=∠E,  ∴∠E=∠FGA    ∴AG=AF

根據(jù)菱形有:∠BAD=∠FCE  ∴∠BAD=∠FAG,  即:∠BAF+∠FAD=∠FAD+∠DAG

∴∠BAF=∠DAG

在△ABF與△ADG中,  ∴△ABF≌△ADG     ∴BF=DG

∴DF+DG=DF+BF=BD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,將菱形紙片AB(E)CD(F)沿對角線BD(EF)剪開,得到△ABD和△ECF,固定△ABD,并把△ABD與△ECF疊放在一起.精英家教網(wǎng)
(1)操作:如圖2,將△ECF的頂點(diǎn)F固定在△ABD的BD邊上的中點(diǎn)處,△ECF繞點(diǎn)F在BD邊上方左右旋轉(zhuǎn),設(shè)旋轉(zhuǎn)時FC交BA于點(diǎn)H(H點(diǎn)不與B點(diǎn)重合),F(xiàn)E交DA于點(diǎn)G(G點(diǎn)不與D點(diǎn)重合).
求證:BH•GD=BF2
(2)操作:如圖3,△ECF的頂點(diǎn)F在△ABD的BD邊上滑動(F點(diǎn)不與B、D點(diǎn)重合),且CF始終經(jīng)過點(diǎn)A,過點(diǎn)A作AG∥CE,交FE于點(diǎn)G,連接DG.
探究:FD+DG=
 
.請予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,將菱形紙片AB(E)CD(F)沿對角線BD(EF)剪開,得到△ABD和△ECF,固定△ABD,并把△ABD與△ECF疊放在一起.作業(yè)寶
(1)操作:如圖2,將△ECF的頂點(diǎn)F固定在△ABD的BD邊上的中點(diǎn)處,△ECF繞點(diǎn)F在BD邊上方左右旋轉(zhuǎn),設(shè)旋轉(zhuǎn)時FC交BA于點(diǎn)H(H點(diǎn)不與B點(diǎn)重合),F(xiàn)E交DA于點(diǎn)G(G點(diǎn)不與D點(diǎn)重合).
求證:BH•GD=BF2
(2)操作:如圖3,△ECF的頂點(diǎn)F在△ABD的BD邊上滑動(F點(diǎn)不與B、D點(diǎn)重合),且CF始終經(jīng)過點(diǎn)A,過點(diǎn)A作AG∥CE,交FE于點(diǎn)G,連接DG.
探究:FD+DG=______.請予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年河北省石家莊市新樂市博林中學(xué)中考仿真模擬數(shù)學(xué)試卷(一)(解析版) 題型:解答題

如圖1,將菱形紙片AB(E)CD(F)沿對角線BD(EF)剪開,得到△ABD和△ECF,固定△ABD,并把△ABD與△ECF疊放在一起.
(1)操作:如圖2,將△ECF的頂點(diǎn)F固定在△ABD的BD邊上的中點(diǎn)處,△ECF繞點(diǎn)F在BD邊上方左右旋轉(zhuǎn),設(shè)旋轉(zhuǎn)時FC交BA于點(diǎn)H(H點(diǎn)不與B點(diǎn)重合),F(xiàn)E交DA于點(diǎn)G(G點(diǎn)不與D點(diǎn)重合).
求證:BH•GD=BF2
(2)操作:如圖3,△ECF的頂點(diǎn)F在△ABD的BD邊上滑動(F點(diǎn)不與B、D點(diǎn)重合),且CF始終經(jīng)過點(diǎn)A,過點(diǎn)A作AG∥CE,交FE于點(diǎn)G,連接DG.
探究:FD+DG=______.請予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年廣東省中考數(shù)學(xué)押題卷(二)(解析版) 題型:解答題

如圖1,將菱形紙片AB(E)CD(F)沿對角線BD(EF)剪開,得到△ABD和△ECF,固定△ABD,并把△ABD與△ECF疊放在一起.
(1)操作:如圖2,將△ECF的頂點(diǎn)F固定在△ABD的BD邊上的中點(diǎn)處,△ECF繞點(diǎn)F在BD邊上方左右旋轉(zhuǎn),設(shè)旋轉(zhuǎn)時FC交BA于點(diǎn)H(H點(diǎn)不與B點(diǎn)重合),F(xiàn)E交DA于點(diǎn)G(G點(diǎn)不與D點(diǎn)重合).
求證:BH•GD=BF2
(2)操作:如圖3,△ECF的頂點(diǎn)F在△ABD的BD邊上滑動(F點(diǎn)不與B、D點(diǎn)重合),且CF始終經(jīng)過點(diǎn)A,過點(diǎn)A作AG∥CE,交FE于點(diǎn)G,連接DG.
探究:FD+DG=______.請予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年廣東省中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

如圖1,將菱形紙片AB(E)CD(F)沿對角線BD(EF)剪開,得到△ABD和△ECF,固定△ABD,并把△ABD與△ECF疊放在一起.
(1)操作:如圖2,將△ECF的頂點(diǎn)F固定在△ABD的BD邊上的中點(diǎn)處,△ECF繞點(diǎn)F在BD邊上方左右旋轉(zhuǎn),設(shè)旋轉(zhuǎn)時FC交BA于點(diǎn)H(H點(diǎn)不與B點(diǎn)重合),F(xiàn)E交DA于點(diǎn)G(G點(diǎn)不與D點(diǎn)重合).
求證:BH•GD=BF2
(2)操作:如圖3,△ECF的頂點(diǎn)F在△ABD的BD邊上滑動(F點(diǎn)不與B、D點(diǎn)重合),且CF始終經(jīng)過點(diǎn)A,過點(diǎn)A作AG∥CE,交FE于點(diǎn)G,連接DG.
探究:FD+DG=______.請予證明.

查看答案和解析>>

同步練習(xí)冊答案