(1)操作發(fā)現(xiàn):
如圖,矩形ABCD中,E是AD的中點(diǎn),將△ABE沿BE折疊后得到△GBE,且點(diǎn)在G矩形ABCD內(nèi)部.小明將BG延長交DC于點(diǎn)F,認(rèn)為GF=DF,你同意嗎?說明理由.
(2)問題解決:保持(1)中的條件不變,若DC=2DF,求值.
(3)類比探究: 保持(1)中的條件不變,若DC=n.DF,求的值(直接寫出答案)
(1)同意;(2);(3)
【解析】
試題分析:(1)求簡單的線段相等,可證線段所在的三角形全等,即連接EF,證△EGF≌△EDF即可;
(2)可設(shè)DF=x,BC=y;進(jìn)而可用x表示出DC、AB的長,根據(jù)折疊的性質(zhì)知AB=BG,即可得到BG的表達(dá)式,由(1)證得GF=DF,那么GF=x,由此可求出BF的表達(dá)式,進(jìn)而可在Rt△BFC中,根據(jù)勾股定理求出x、y的比例關(guān)系,即可得到的值;
(3)方法同(2).
(1)連接EF,
根據(jù)翻折不變性得∠EGF=∠D=90°,EG=AE=ED,EF=EF,
∴Rt△EGF≌Rt△EDF,
∴GF=DF;
(2)設(shè)DF=x,BC=y,則有GF=x,AD=y
∵DC=2DF,
∴CF=x,DC=AB=BG=2x,
∴BF=BG+GF=3x;
在Rt△BCF中,BC+CF
=BF
,即y
+x
=(3x)
∴y=,
(3)由(1)知,GF=DF,設(shè)DF=x,BC=y,則有GF=x,AD=y
∵DC=n?DF,
∴BF=BG+GF=(n+1)x
在Rt△BCF中,BC+CF
=BF
,即y
+[(n-1)x]
=[(n+1)x]
,
∴y=
考點(diǎn):矩形的性質(zhì),圖形的折疊變換,全等三角形的判定和性質(zhì),勾股定理的應(yīng)用
點(diǎn)評:此類問題綜合性強(qiáng),難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com