已知點(diǎn)H(-1,2)在二次函數(shù)y=x2-2x+m的圖象C1上。
(1)求m的值;
(2)若拋物線C2:y=ax2+bx+c與拋物線C1關(guān)于y軸對稱,且Q1(-2,q1)、Q2(-3,q2)在拋物線C2上,則q1q2(用“=”、“>”、“<”、“≥”、“≤”填空)。
(3)設(shè)拋物線C2的頂點(diǎn)為M,拋物線C1的頂點(diǎn)為N,請問在拋物線C1或C2上是否存在點(diǎn)P,使以點(diǎn)P、M、N為頂點(diǎn)的三角形是直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由。

解:(1)∵點(diǎn)H(-1,2)在拋物線上,
∴2=(-1)2-2×(-1)+m,
∴m=-1;
(2)q1<q2
由(1)知,C1==
∴C1的對稱軸為:直線x=1,頂點(diǎn)坐標(biāo)為:(1,-2),
∵拋物線C2與C1關(guān)于y軸對稱,
∴C2的解析式為:,
又∵Q1(-2,q1),Q2(-3,q2)在拋物線C2上,且在對稱軸x=-1的左側(cè),
∴q1<q2;
(3)存在這樣的點(diǎn)P,使以P,M,N為頂點(diǎn)的三角形是直角三角形,
由上述可知:M(-1,-2),N(1,-2),
① 當(dāng)M為直角頂點(diǎn)時(shí),點(diǎn)P在C1上,
當(dāng)x=-1時(shí),y=2,
∴P(-1,2);
② 當(dāng)N為直角頂點(diǎn)時(shí),點(diǎn)P在C2上,
當(dāng)x=1時(shí),y=2,
∴P(1,2);
③ 當(dāng)P為直角頂點(diǎn)時(shí),P(0,-1);
綜上可知:點(diǎn)P的坐標(biāo)為(-1,2)或(1,2)或(0,-1)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

5、已知點(diǎn)A(m,2m)和點(diǎn)B(3,m2-3),直線AB平行于x軸,則m等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,已知點(diǎn)A,B,C在⊙O上,AC∥OB,∠BOC=40°,則∠ABO=
20
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知點(diǎn)A1,A2,A3是拋物線y=
1
2
x2上的三點(diǎn),線段A1B1,A2B2,A3B3都垂直于x軸,垂足分別為點(diǎn)B1,B2,B3,延長線段B2A2交線段A1A3于點(diǎn)C.
(1)在圖(1)中,若點(diǎn)A1,A2,A3的橫坐標(biāo)依次為1,2,3,求線段CA2的長;
(2)若將拋物線改為y=
1
2
x2-x+1,如圖2,點(diǎn)A1,A精英家教網(wǎng)2,A3的橫坐標(biāo)依次為三個(gè)連續(xù)整數(shù),其他條件不變,求線段CA2的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、對于點(diǎn)O、M,點(diǎn)M沿MO的方向運(yùn)動(dòng)到O左轉(zhuǎn)彎繼續(xù)運(yùn)動(dòng)到N,使OM=ON,且OM⊥ON,這一過程稱為M點(diǎn)關(guān)于O點(diǎn)完成一次“左轉(zhuǎn)彎運(yùn)動(dòng)”.正方形ABCD和點(diǎn)P,P點(diǎn)關(guān)于A左轉(zhuǎn)彎運(yùn)動(dòng)到P1,P1關(guān)于B左轉(zhuǎn)彎運(yùn)動(dòng)到P2,P2關(guān)于C左轉(zhuǎn)彎運(yùn)動(dòng)到P3,P3關(guān)于D左轉(zhuǎn)彎運(yùn)動(dòng)到P4,P4關(guān)于A左轉(zhuǎn)彎運(yùn)動(dòng)到P5,….
(1)請你在圖中用直尺和圓規(guī)在圖中確定點(diǎn)P1的位置;
(2)連接P1A、P1B,判斷△ABP1與△ADP之間有怎樣的關(guān)系?并說明理由.
(3)以D為原點(diǎn)、直線AD為y軸建立直角坐標(biāo)系,并且已知點(diǎn)B在第二象限,A、P兩點(diǎn)的坐標(biāo)為(0,4)、(1,1),請你推斷:P4、P2009、P2010三點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(0,2)、B(4,0),點(diǎn)C、D分別在直線x=1與x=2上,且CD∥x軸,則AC+CD+DB的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案