【題目】如圖,在矩形ABCD中,AB4,BC3,點(diǎn)P是邊AB上的一動(dòng)點(diǎn),連結(jié)DP

1)若將△DAP沿DP折疊,點(diǎn)A落在矩形的對(duì)角線(xiàn)上點(diǎn)A′處,試求AP的長(zhǎng);

2)點(diǎn)P運(yùn)動(dòng)到某一時(shí)刻,過(guò)點(diǎn)P作直線(xiàn)PEBC于點(diǎn)E,將△DAP與△PBE分別沿DPPE折疊,點(diǎn)A與點(diǎn)B分別落在點(diǎn)A′,B′處,若PA′,B′三點(diǎn)恰好在同一直線(xiàn)上,且AB′=2,試求此時(shí)AP的長(zhǎng);

3)當(dāng)點(diǎn)P運(yùn)動(dòng)到邊AB的中點(diǎn)處時(shí),過(guò)點(diǎn)P作直線(xiàn)PGBC于點(diǎn)G,將△DAP與△PBG分別沿DPPG折疊,點(diǎn)A與點(diǎn)B重合于點(diǎn)F處,連結(jié)CF,請(qǐng)求出CF的長(zhǎng).

【答案】1AP的長(zhǎng)為;(2PA的長(zhǎng)為13;(3CF

【解析】

1)分兩種情形:①當(dāng)點(diǎn)A落在對(duì)角線(xiàn)BD上時(shí),設(shè)AP=PA′=x,構(gòu)建方程即可解決問(wèn)題;②當(dāng)點(diǎn)A落在對(duì)角線(xiàn)AC上時(shí),利用相似三角形的性質(zhì)構(gòu)建方程即可解決問(wèn)題;

2)分兩種情形分別求解即可解決問(wèn)題;

3)如圖5中,作FHCDH.想辦法求出FH、CH即可解決問(wèn)題;

1當(dāng)點(diǎn)A落在對(duì)角線(xiàn)BD上時(shí),設(shè)APPAx

Rt△ADB中,AB4,AD3,BD5,

ABDA3BA2,

Rt△BPA中,(4x2x2+22,解得x,

AP

當(dāng)點(diǎn)A落在對(duì)角線(xiàn)AC上時(shí),

由翻折性質(zhì)可知:PDAC,則有DAP∽△ABC

,AP

AP的長(zhǎng)為

2如圖3中,設(shè)APx,則PB4x,

根據(jù)折疊的性質(zhì)可知:PAPAx,PBPB4x,

AB2,∴4xx2,x1,PA1

如圖4中,

設(shè)APx,則PB4x,

根據(jù)折疊的性質(zhì)可知:PAPAx,PBPB4x,

AB2,x﹣(4x)=2

x3,PA3;

綜上所述,PA的長(zhǎng)為13

3)如圖5中,作FHCDH

由翻折的性質(zhì)可知;ADDF3BGBF,G、F、D共線(xiàn),

設(shè)BGFGx,在Rt△GCD中,(x+3242+3x2

解得x,DGDF+FG,CGBCBG,

FHCG,,,

FHDH,CH4,

Rt△CFH中,CF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)的頂點(diǎn)為,與軸相交于點(diǎn),對(duì)稱(chēng)軸為直線(xiàn),點(diǎn)是線(xiàn)段的中點(diǎn).

1)求拋物線(xiàn)的表達(dá)式;

2)寫(xiě)出點(diǎn)的坐標(biāo)并求直線(xiàn)的表達(dá)式;

3)設(shè)動(dòng)點(diǎn),分別在拋物線(xiàn)和對(duì)稱(chēng)軸l上,當(dāng)以,,,為頂點(diǎn)的四邊形是平行四邊形時(shí),求,兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:

數(shù)學(xué)活動(dòng)課上,李老師給出如下定義:如果一個(gè)三角形有一邊上的中線(xiàn)等于這條邊的一半,那么稱(chēng)三角形為智慧三角形.

理解:

如圖,已知上兩點(diǎn),請(qǐng)?jiān)趫A上找出滿(mǎn)足條件的點(diǎn),使智慧三角形(畫(huà)出點(diǎn)的位置,保留作圖痕跡);

如圖,在正方形中,的中點(diǎn),上一點(diǎn),且,試判斷是否為智慧三角形,并說(shuō)明理由;

運(yùn)用:

如圖,在平面直角坐標(biāo)系中,的半徑為,點(diǎn)是直線(xiàn)上的一點(diǎn),若在上存在一點(diǎn),使得智慧三角形,當(dāng)其面積取得最小值時(shí),直接寫(xiě)出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓0的直徑AB垂直于弦CD于點(diǎn)ECG是圓O的切線(xiàn)交AB的延長(zhǎng)線(xiàn)于點(diǎn)G,連接CO并延長(zhǎng)交AD于點(diǎn)F,且CFAD.

1)試問(wèn):CG//AD嗎?說(shuō)明理由:

2)證明:點(diǎn)EOB的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在解決數(shù)學(xué)問(wèn)題時(shí),我們常常從特殊入手,猜想結(jié)論,并嘗試發(fā)現(xiàn)解決問(wèn)題的策略與方法.

(問(wèn)題提出)

求證:如果一個(gè)定圓的內(nèi)接四邊形對(duì)角線(xiàn)互相垂直,那么這個(gè)四邊形的對(duì)邊的平方和是一個(gè)定值.

(從特殊入手)

我們不妨設(shè)定圓O的半徑是R,O的內(nèi)接四邊形ABCD中,ACBD.

請(qǐng)你在圖①中補(bǔ)全特殊殊位置時(shí)的圖形,并借助于所畫(huà)圖形探究問(wèn)題的結(jié)論.

(問(wèn)題解決)

已知:如圖②,定圓⊙O的半徑是R,四邊形ABCD是⊙O的內(nèi)接四邊形, ACBD.

求證:

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果一元二次方程滿(mǎn)足,那么我們稱(chēng)這個(gè)方程為鳳凰方程.已知鳳凰方程,且有兩個(gè)相等的實(shí)數(shù)根,則下列結(jié)論正確的是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)yax2+bx+ca0)的對(duì)稱(chēng)軸為直線(xiàn)x=﹣1,與x軸的一個(gè)交點(diǎn)在(﹣30和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:2ab04acb20點(diǎn)(x1,y1),(x2y2)在拋物線(xiàn)上若x1x2,則y1y2;a+b+c0.正確結(jié)論的個(gè)數(shù)是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ACB內(nèi)接于圓O,AB為直徑,CDAB與點(diǎn)D,E為圓外一點(diǎn),EOAB,與BC交于點(diǎn)G,與圓O交于點(diǎn)F,連接EC,且EG=EC

1)求證:EC是圓O的切線(xiàn);

2)當(dāng)∠ABC=22.5°時(shí),連接CF

①求證:AC=CF;

②若AD=1,求線(xiàn)段FG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2bxc的圖象如圖所示,有以下結(jié)論:①abc0;②abc0;③2ab;④4a2bc0;⑤若點(diǎn)(2,y1)(y2)在該圖象上,則y1y2. 其中正確的結(jié)論個(gè)數(shù)是 ( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案