【小題1】觀察與發(fā)現(xiàn):
在一次數(shù)學課堂上,老師把三角形紙片ABC(ABAC)沿過A點的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖①);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到△AEF(如圖②).有同學說此時的△AEF是等腰三角形,你同意嗎?請說明理由.

【小題2】實踐與運用
將矩形紙片ABCD沿過點B的直線折疊,使點A落在BC邊上的點F處,折痕為BE(如圖③);再沿過點E的直線折疊,使點D落在BE上的點處,折痕為EG(如圖④);再展平紙片(如圖⑤).試問:圖⑤中∠的大小是多少?(直接回答,不用說明理由).

【小題1】同意.

如圖,設ADEF交于點M
由折疊知,∠BAD=∠CAD
AME=∠AMF=90O. 
∴ 根據(jù)三角形內(nèi)角和定理得 ∠AEF=∠AFE
∴AE=AF即 △AEF是等腰三角形.
【小題2】圖⑤中的大小是22.5o.解析:
p;【解析】略
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

  (本小題滿分12分)
【小題1】 (1)觀察發(fā)現(xiàn)
如(a)圖,若點A,B在直線同側(cè),在直線上找一點P,使AP+BP的值最。
做法如下:作點B關于直線的對稱點,連接,與直線的交點就是所求的點P
再如(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小.
做法如下:作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為       . (2分)

【小題2】(2)實踐運用
如圖,菱形ABCD的兩條對角線分別長6和8,點P是對角線AC上的一個動點,點M、N分別是邊AB、BC的中點,求PM+PN的最小值。(5分)

【小題3】(3)拓展延伸
如(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法.  (5分)

查看答案和解析>>

科目:初中數(shù)學 來源:2011年河北省唐山市玉田縣八年級第一學期期中考試數(shù)學卷 題型:解答題


【小題1】觀察與發(fā)現(xiàn):
在一次數(shù)學課堂上,老師把三角形紙片ABC(ABAC)沿過A點的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖①);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到△AEF(如圖②).有同學說此時的△AEF是等腰三角形,你同意嗎?請說明理由.

【小題2】實踐與運用
將矩形紙片ABCD沿過點B的直線折疊,使點A落在BC邊上的點F處,折痕為BE(如圖③);再沿過點E的直線折疊,使點D落在BE上的點處,折痕為EG(如圖④);再展平紙片(如圖⑤).試問:圖⑤中∠的大小是多少?(直接回答,不用說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年浙江省衢州華外九年級第一學期第三次質(zhì)量檢測數(shù)學卷 題型:解答題

(本題10分)已知:正方形ABCD的邊長為a,P是邊CD上一個動點不與C、D重合,CP=b,以CP為一邊在正方形ABCD外作正方形PCEF,連接BF、DF.

【小題1】觀察計算:(1)如圖1,當a=4,b=1時,四邊形ABFD的面積為          
(2)如圖2,當a=4,b=2時,四邊形ABFD的面積為          
(3)如圖3,當a=4,b=3時,四邊形ABFD的面積為          ;
【小題2】探索發(fā)現(xiàn):(4)根據(jù)上述計算的結(jié)果,你認為四邊形ABFD的面積與正方形ABCD的面積之間有怎樣的關系?證明你的結(jié)論;

【小題3】綜合應用:(5)農(nóng)民趙大伯有一塊正方形的土地(如圖),由于修路被占去一塊三角形的地方△BCE,但決定在DE的右側(cè)補給趙大伯一塊土地,補償后的土地為四邊形ABMD,且四邊形ABMD的面積與原來正方形土地的面積相等,M、E、B三點要在一條直線上,請你畫圖說明,如何確定M點的位置.(要求尺規(guī)作圖,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年江蘇GSJY八年級第二次學情調(diào)研考試數(shù)學卷 題型:解答題

  (本小題滿分12分)
【小題1】 (1)觀察發(fā)現(xiàn)
如(a)圖,若點A,B在直線同側(cè),在直線上找一點P,使AP+BP的值最。
做法如下:作點B關于直線的對稱點,連接,與直線的交點就是所求的點P
再如(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最。
做法如下:作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為       . (2分)

【小題2】(2)實踐運用
如圖,菱形ABCD的兩條對角線分別長6和8,點P是對角線AC上的一個動點,點M、N分別是邊AB、BC的中點,求PM+PN的最小值。(5分)

【小題3】(3)拓展延伸
如(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法.  (5分)

查看答案和解析>>

同步練習冊答案