【題目】如圖,在ABCD中,對角線AC、BD相交于點O,點E、F是AD上的點,且AE=EF=FD.連接BE、BF,使它們分別與AO相交于點G、H.
(1)求EG:BG的值;
(2)求證:AG=OG;
(3)設(shè)AG=a,GH=b,HO=c,求a:b:c的值.
【答案】(1)1:3;(2)見解析;(3)5:3:2.
【解析】
(1)根據(jù)平行四邊形的性質(zhì)可得AO=AC,AD=BC,AD∥BC,從而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根據(jù)相似三角形的性質(zhì),即可求出EG:BG的值;
(2)根據(jù)相似三角形的性質(zhì)可得GC=3AG,則有AC=4AG,從而可得AO=AC=2AG,即可得到GO=AO﹣AG=AG;
(3)根據(jù)相似三角形的性質(zhì)可得AG=AC,AH=AC,結(jié)合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值.
(1)∵四邊形ABCD是平行四邊形,
∴AO=AC,AD=BC,AD∥BC,
∴△AEG∽△CBG,
∴.
∵AE=EF=FD,
∴BC=AD=3AE,
∴GC=3AG,GB=3EG,
∴EG:BG=1:3;
(2)∵GC=3AG(已證),
∴AC=4AG,
∴AO=AC=2AG,
∴GO=AO﹣AG=AG;
(3)∵AE=EF=FD,
∴BC=AD=3AE,AF=2AE.
∵AD∥BC,
∴△AFH∽△CBH,
∴,
∴=,即AH=AC.
∵AC=4AG,
∴a=AG=AC,
b=AH﹣AG=AC﹣AC=AC,
c=AO﹣AH=AC﹣AC=AC,
∴a:b:c=::=5:3:2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:∠AOB=140°,OC,OM,ON是∠AOB內(nèi)的射線.
(1)如圖1所示,若OM平分∠BOC,ON平分∠AOC,求∠MON的度數(shù):
(2)如圖2所示,OD也是∠AOB內(nèi)的射線,∠COD=15°,ON平分∠AOD,OM平分∠BOC.當(dāng)∠COD繞點O在∠AOB內(nèi)旋轉(zhuǎn)時,∠MON的位置也會變化但大小保持不變,請求出∠MON的大;
(3)在(2)的條件下,以∠AOC=20°為起始位置(如圖3),當(dāng)∠COD在∠AOB內(nèi)繞點O以每秒3°的速度逆時針旋轉(zhuǎn)t秒,若∠AON:∠BOM=19:12,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠A=90°.
(1)請用圓規(guī)和直尺作出⊙P,使圓心P在AC邊上,且與AB,BC兩邊都相切(保留作圖痕跡,不寫作法和證明);
(2)在(1)的條件下,若∠B=45°,AB=1,⊙P切BC于點D,求劣弧的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條不完整的數(shù)軸上從左到右有點A,B,C,其中點A到點B的距離為3,點C到點B的距離為7,如圖所示:設(shè)點A,B,C所對應(yīng)的數(shù)的和是m.
(1)若以C為原點,則m的值是_______;
(2)若原點0在圖中數(shù)軸上,且點C到原點0的距離為4,求m的值;
(3)動點P從A點出發(fā),以每秒2個單位長度的速度向終點C移動,動點Q同時從B點出發(fā),以每秒1個單位的速度向終點C移動,當(dāng)幾秒后,P、Q兩點間的距離為2?(直接寫出答案即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y=的圖象如圖所示,A,P為該圖象上的點,且關(guān)于原點成中心對稱.在△PAB中,PB∥y軸,AB∥x軸,PB與AB相交于點B.若△PAB的面積大于12,則關(guān)于x的方程(a-1)x2-x+=0的根的情況是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,給正五邊形的頂點依次編號為1,2,3,4,5,若從某一個頂點開始,沿正五邊形的邊順時針方向行走,頂點編號的數(shù)字是幾,就走幾個邊長,則稱這種走法為一次“移位”,如:小明在編號為2的頂點上時,那么他應(yīng)走2個邊長,即從2→3→4為第一次“移位”,這時他到達(dá)編號為4的頂點,接下來他應(yīng)走4個邊長后從4→5→1→2→3為第二次“移位”若小明從編號為1的頂點開始,第2020次“移位”后,則他所處頂點的編號為
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以點A為圓心,任意長為半徑畫弧,分別交AB,AC于點M和N,再分別以點M,N為圓心,大于MN長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長,交BC于點D,則下列說法中,正確的個數(shù)是( )
①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC∶S△ABC=1∶3.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮從家步行到公交車站臺,等公交車去學(xué)校. 圖中的折線表示小亮的行程s(km)與所花時間t(min)之間的函數(shù)關(guān)系. 下列說法錯誤的是
A. 他離家8km共用了30min B. 他等公交車時間為6min
C. 他步行的速度是100m/min D. 公交車的速度是350m/min
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,所有小正方形的邊長都為1,A、B、C都在格點上.
(1)過點C畫直線AB的平行線CD;
(2)過點B畫直線AC的垂線,并注明垂足為G;
(3)線段 的長度是點B到直線AC的距離;線段BC的長度是 的距離;
(4)因為直線外一點與直線上各點連接的所有線段中,垂線段最短,所以線段BC、BG的大小關(guān)系為:BC BG.
(5)計算格點△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com