【題目】拋物線yax2bxc(a≠0)的對稱軸為直線x=-1,與x軸的一個交點在(3,0)(2,0)之間,其部分圖象如圖,則下列結論:①4acb20;②2ab0;③abc0;④點(x1,y1),(x2,y2)在拋物線上,若x1x2,則y1y2 .正確結論的個數(shù)是( )

A.1B.2C.3D.4

【答案】C

【解析】

根據(jù)二次函數(shù)圖像與b24ac的關系、對稱軸公式、點的坐標及增減性逐一判斷即可.

解:①由圖可知,將拋物線補全,拋物線yax2bxc(a≠0)x軸有兩個交點

b24ac0

4acb20,故①正確;

②∵拋物線yax2bxc(a≠0)的對稱軸為直線x=-1

解得:

2ab0,故②正確;

③∵拋物線yax2bxc(a≠0)的對稱軸為直線x=-1,與x軸的一個交點在(3,0)(20)之間,

∴此拋物線與x軸的另一個交點在(00)(1,0)之間

∵在對稱軸的右側,函數(shù)yx增大而減小

∴當x=1時,y0

∴將x=1代入解析式中,得:yabc0

故③正確;

④若點(x1,y1)(x2,y2)在對稱軸右側時,

函數(shù)yx增大而減小

即若x1x2,則y1y2

故④錯誤;

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知OA=12cm,OB=6cm.P從點O開始沿0A邊向點A1cm/s的速度移動;點Q從點B開始沿BO邊向點O1cm/s的速度移動,如果點PQ同時出發(fā),用t(s)表示移動的時間(0≤t<6),那么:

(1)ΔPOQ的面積為y,求y關于t的函數(shù)關系式;

(2)ΔPOQ的面積為4.5cm時,ΔPOQ沿直線PQ翻折后得到ΔPCQ.試判斷點C是否落在直線AB上,并說明理由;

(3)t為何值時,△POQ與△AOB相似.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+c的頂點為D﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結論:①b2﹣4ac0;②當x﹣1時,yx增大而減;③a+b+c0;④若方程ax2+bx+c﹣m=0沒有實數(shù)根,則m2; 3a+c0.其中正確結論的個數(shù)是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是正方形ABCD的邊BC上的一點,∠DAE的平分線AFBC的延長線于點F,交CD于點G,若AB=8BF=16,求CE的長;.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:

在平面直角坐標系xOy中,點P(x0,y0)到直線Ax+By+C=0的距離公式為:

例如:求點P0(0,0)到直線4x+3y﹣3=0的距離.

解:由直線4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴點P0(0,0)到直線4x+3y﹣3=0的距離為=

根據(jù)以上材料,解決下列問題:

問題1:點P1(3,4)到直線的距離為 ;

問題2:已知:⊙C是以點C(2,1)為圓心,1為半徑的圓,⊙C與直線相切,求實數(shù)b的值;

問題3:如圖,設點P為問題2中⊙C上的任意一點,點A,B為直線3x+4y+5=0上的兩點,且AB=2,請求出SABP的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA、PB為圓O的切線,切點分別為A、B,POAB于點C,PO的延長線交圓O于點D,下列結論不一定成立的是( )

A. PAPBB. ∠BPD=∠APDC. AB⊥PDD. AB平分PD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知矩形AOCBAB=6cm,BC=16cm,動點P從點A出發(fā),以3cm/s的速度向點O運動,直到點O為止;動點Q同時從點C出發(fā),以2cm/s的速度向點B運動,與點P同時結束運動.

1)當運動時間為2s時,P、Q兩點的距離為   cm

2)請你計算出發(fā)多久時,點P和點Q之間的距離是10cm;

3)如圖2,以點O為坐標原點,OC所在直線為x軸,OA所在直線為y軸,1cm長為單位長度建立平面直角坐標系,連結AC,與PQ相交于點D,若雙曲線過點D,問k的值是否會變化?若會變化,說明理由;若不會變化,請求出k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓錐母線的長l等于底面半徑r4倍,

1)求它的側面展開圖的圓心角.

2)當圓錐的底面半徑r4cm時,求從B點出發(fā)沿圓錐側面繞一圈回到B點的最短路徑的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列方程中,有實數(shù)根的是( 。

A. +10B.x+1C.2x4+30D.=﹣1

查看答案和解析>>

同步練習冊答案