已知等腰三角形ABC中,∠ACB=90°,點(diǎn)E在AC邊的延長(zhǎng)線上,且∠DEC=45°,點(diǎn)M、N分別是DE、AE的中點(diǎn),連接MN交直線BE于點(diǎn)F.當(dāng)點(diǎn)D在CB邊上時(shí),如圖1所示,易證MF+FN=BE

(1)當(dāng)點(diǎn)D在CB邊上時(shí),如圖2所示,上述結(jié)論是否成立?若成立,請(qǐng)給與證明;若不成立,請(qǐng)寫(xiě)出你的猜想,并說(shuō)明理由.

(2)當(dāng)點(diǎn)D在BC邊的延長(zhǎng)線上時(shí),如圖3所示,請(qǐng)直接寫(xiě)出你的結(jié)論.(不需要證明)

 

【答案】

(1)不成立。猜想:FN﹣MF=BE。理由見(jiàn)解析

(2)MF﹣FN=BE。

【解析】

試題分析:(1)對(duì)結(jié)論作出否定,猜想FN﹣MF=BE,連接AD,根據(jù)M、N分別是DE、AE的中點(diǎn),可得MN=AD,再根據(jù)題干條件證明△ACD≌△BCE,得出AD=BE,結(jié)合MN=FN﹣MF,于是證明出猜想。

(1)不成立。猜想:FN﹣MF=BE。理由如下:

如圖,連接AD,.

∵M(jìn)、N分別是DE、AE的中點(diǎn),∴MN=AD。

∵在△ACD與△BCE中,AC=BC,∠ACD=∠BCE,CD=CE,

∴△ACD≌△BCE(SAS)!郃D=BE。

∵M(jìn)N=FN﹣MF,∴FN﹣MF=BE。

(2)結(jié)論:MF﹣FN=BE,證明如下:

連接AD,

∵M(jìn)、N分別是DE、AE的中點(diǎn),∴MN=AD。

∵在△ACD與△BCE中,AC=BC,∠ACD=∠BCE,CD=CE,

∴△ACD≌△BCE(SAS)!郃D=BE。∴MN=BE。

∵M(jìn)N=FM﹣FN,∴MF﹣FN=BE。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知等腰三角形△ABC的周長(zhǎng)為60,底邊BC長(zhǎng)為x,腰AB長(zhǎng)為y,則y與x之間的關(guān)系是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,已知等腰三角形ABC中,AC=BC,D為BC邊上一點(diǎn),且AB=AD,若不再添加輔助線,圖中與∠C相等的角是
∠BAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知等腰三角形ABC的腰AB=AC=10cm,底邊BC=12cm,∠BAC的平分線AD交BC于點(diǎn)D,則AD的長(zhǎng)為
8
8
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知等腰三角形ABC,頂點(diǎn)A的坐標(biāo)是(
32
,3),點(diǎn)B的坐標(biāo)是(0,-2),則△ABC的面積是
7.5
7.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知等腰三角形ABC的底邊BC=20cm,D是腰AB上一點(diǎn),且CD=16cm,BD=12cm,求△ABC的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案