【題目】△ABC中,AD⊥BC,AE平分∠BAC交BC于點E.
(1)∠B=30°,∠C=70°,求∠EAD的大小;
(2)若∠B<∠C,則2∠EAD與∠C-∠B是否相等?若相等,請說明理由.
【答案】(1)∠EAD=20°;(2)2∠EAD=∠C∠B,理由見解析.
【解析】分析:(1)由三角形內(nèi)角和定理可求得∠BAC的度數(shù),在Rt△ADC中,可求得∠DAC的度數(shù),AE是角平分線,有∠EAC=∠BAC,故∠EAD=∠EAC-∠DAC;(2)由(1)知,用∠C和∠B表示出∠EAD,即可知2∠EAD與∠C-∠B的關系.
本題解析:
(1)∵∠B=30°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=80°,
∵AE是角平分線,∴ ∠EAC=∠BAC=40°,∵AD是高,∠C=70°,
∴∠DAC=90°﹣∠C=20°,∴∠EAD=∠EAC﹣∠DAC=40°﹣20°=20°;
(2)由(1)知,∠EAD=∠EAC﹣∠DAC=∠BAC﹣(90°﹣∠C)①,
把∠BAC=180°﹣∠B﹣∠C代入①,整理得∠EAD=∠C﹣∠B,
∴2∠EAD=∠C﹣∠B.
科目:初中數(shù)學 來源: 題型:
【題目】完成下面推理過程: 如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD(),
∴∠2=∠CGD(等量代換).
∴CE∥BF().
∴∠=∠C().
又∵∠B=∠C(已知),
∴∠=∠B(等量代換).
∴AB∥CD().
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人在相同條件下各射靶10次,每次射靶的成績情況如圖所示:
(1)請?zhí)顚懴卤?
平均數(shù) | 方差 | 中位數(shù) | 命中9環(huán)及以上的次數(shù) | |
甲 | 7 | 1.2 | 1 | |
乙 | 5.4 |
(2)請從下列四個不同的角度對這次測試結果進行分析:
①從平均數(shù)和方差相結合看;
②從平均數(shù)和中位數(shù)相結合看(分析誰的成績好些);
③從平均數(shù)和命中9環(huán)以上的次數(shù)相結合看(分析誰的成績好些);
④從折線圖上兩人射擊命中環(huán)數(shù)的走勢看(分析誰更有潛力).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市一月份的營業(yè)額為200萬元,一季度的營業(yè)額為728萬元,如果每月比上月增長的百分數(shù)相同,則平均每月的增長率為( )
A.20%
B.45%
C.65%
D.91%
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線CB∥OA,∠C=∠OAB=100°,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF
(1)求∠EOB的度數(shù);
(2)若平行移動AB,那么∠OBC:∠OFC的值是否隨之發(fā)生變化?若變化,找出變化規(guī)律或求出變化范圍;若不變,求出這個比值
(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=∠OBA?若存在,求出其度數(shù);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,將一個邊長為2的正方形ABCD和一個長為2,寬為1的長方形CEFD拼在一起,構成一個大的長方形ABEF,現(xiàn)將小長方形CEFD繞點C順時針旋轉(zhuǎn)至CE′F′D′,旋轉(zhuǎn)角為α.
(1)當邊CD′恰好經(jīng)過EF的中點H時,求旋轉(zhuǎn)角α的大小;
(2)如圖2,G為BC中點,且0°<α<90°,求證:GD′=E′D;
(3)小長方形CEFD繞點C順時針旋轉(zhuǎn)一周的過程中,△DCD′與△BCD′能否全等?若能,直接寫出旋轉(zhuǎn)角α的大小;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD⊥BC,GC⊥BC,CF⊥AB,垂足分別是D、C、F,下列說法中,錯誤的是( 。
A. △ABC中,AD是邊BC上的高
B. △ABC中,GC是邊BC上的高
C. △GBC中,GC是邊BC上的高
D. △GBC中,CF是邊BG上的高
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com