【題目】(8分)在ΔABC中,AB=AC
(1)如圖1,如果∠BAD=30°,AD是BC上的高,AD=AE,則∠EDC=__________
(2)如圖2,如果∠BAD=40°,AD是BC上的高,AD=AE,則∠EDC=__________
(3)思考:通過(guò)以上兩題,你發(fā)現(xiàn)∠BAD與∠EDC之間有什么關(guān)系?請(qǐng)用式子表示: _____________
(4)如圖3,如果AD不是BC上的高,AD=AE,是否仍有上述關(guān)系?如有,請(qǐng)你寫出來(lái),并說(shuō)明理由.
【答案】(1)15° (2)20°(3)∠BAD=2∠EDC(4)是,證明見(jiàn)解析.
【解析】試題分析:(1)等腰三角形三線合一,所以∠DAE=30°,又因?yàn)?/span>AD=AE,所以∠ADE=∠AED=75°,所以∠DEC=15°.
(2)同理,易證∠ADE=70°,所以∠DEC=20°.
(3)通過(guò)(1)(2)題的結(jié)論可知,∠BAD=2∠EDC(或∠EDC=∠BAD).
(4)由于AD=AE,所以∠ADE=∠AED,根據(jù)已知,易證∠BAD+∠B=2∠EDC+∠C,而B=∠C,所以∠BAD=2∠EDC.
解:(1)∵在△ABC中,AB=AC,AD是BC上的高,
∴∠BAD=∠CAD,
∵∠BAD=30°,
∴∠BAD=∠CAD=30°,
∵AD=AE,
∴∠ADE=∠AED=75°,
∴∠EDC=15°.
(2)∵在△ABC中,AB=AC,AD是BC上的高,
∴∠BAD=∠CAD,
∵∠BAD=40°,
∴∠BAD=∠CAD=40°,
∵AD=AE,
∴∠ADE=∠AED=70°,
∴∠EDC=20°.
(3)∠BAD=2∠EDC(或∠EDC=∠BAD)
(4)仍成立,理由如下
∵AD=AE,∴∠ADE=∠AED,
∴∠BAD+∠B=∠ADC=∠ADE+∠EDC=∠AED+∠EDC=(∠EDC+∠C)+∠EDC
=2∠EDC+∠C
又∵AB=AC,
∴∠B=∠C
∴∠BAD=2∠EDC.
故分別填15°,20°,∠EDC=∠BAD
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 分別平分的外角、內(nèi)角、外角.以下結(jié)論: ①;②;③平分;④; ⑤其中正確的結(jié)論是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)南海海域面積為3500000km2,用科學(xué)記數(shù)法表示3500000為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果兩個(gè)三角形全等,那么下列結(jié)論正確的是( )
A. 這兩個(gè)三角形是直角三角形 B. 這兩個(gè)三角形都是銳角三角形
C. 這兩個(gè)三角形的面積相等 D. 這兩個(gè)三角形是鈍角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某制藥廠2014年正產(chǎn)甲種藥品的成本是500元/kg,隨著生產(chǎn)技術(shù)的進(jìn)步,2016年生產(chǎn)甲種藥品的成本是320元/kg,設(shè)該藥廠2014﹣2016年生產(chǎn)甲種藥品成本的年均下降率為x,則根據(jù)題意可列方程為( 。
A. 500(1﹣x)2=320 B. 500(1+x)2=320
C. 320(1﹣x)2=500 D. 3320(1+x)2=500
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都為1.在方格紙內(nèi)將△ABC經(jīng)過(guò)一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B′.
(1)在給定方格紙中畫出平移后的△A′B′C′;
利用網(wǎng)格點(diǎn)和三角板畫圖或計(jì)算:
(2)畫出AB邊上的中線CD;
(3)畫出BC邊上的高線AE;
(4)△A′B′C′的面積為_(kāi)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】星期天,李玉剛同學(xué)隨爸爸媽媽會(huì)老家探望爺爺奶奶,爸爸8:30騎自行車先走,平均每小時(shí)騎行20km;李玉剛同學(xué)和媽媽9:30乘公交車后行,公交車平均速度是40km/h.爸爸的騎行路線與李玉剛同學(xué)和媽媽的乘車路線相同,路程均為40km/h.設(shè)爸爸騎行時(shí)間為x(h).
(1)請(qǐng)分別寫出爸爸的騎行路程y1(km)、李玉剛同學(xué)和媽媽的乘車路程y2(km)與x(h)之間的函數(shù)解析式,并注明自變量的取值范圍;
(2)請(qǐng)?jiān)谕粋(gè)平面直角坐標(biāo)系中畫出(1)中兩個(gè)函數(shù)的圖象;
(3)請(qǐng)回答誰(shuí)先到達(dá)老家.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,延長(zhǎng)CB至點(diǎn)F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點(diǎn)E,N,M,連接EO.
(1)已知BD=,求正方形ABCD的邊長(zhǎng);
(2)猜想線段EM與CN的數(shù)量關(guān)系并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com