【題目】如圖,在△ABC中,∠ACB=90°,CD是高.
(1)圖中有幾個(gè)直角三角形?是哪幾個(gè)?
(2)∠1和∠A有什么關(guān)系?∠2和∠A呢?還有哪些銳角相等.
【答案】(1)圖中有3個(gè)直角三角形,分別是△ACD,△BCD,△ABC.
(2)∠1+∠A=90°,
∠2=∠A,
∠1=∠B.
【解析】試題分析:(1)由題中已知條件∠ACB=90°,CD是高,可以得到∠ADC、∠BDC、∠ACB都是直角。
(2)由(1)得到ACD,△BCD,△ABC是直角三角形,且∠ADC、∠BDC、∠ACB是直角,所以∠1+∠A=90°,∠1+∠2=90°∠B+∠A=90°,由此可以得到∠2=∠A,∠1=∠B。
試題解析:(1) ∠ACB=90°,CD是高,∴∠ADC=∠BDC=∠ACB=90°∴圖中有3個(gè)直角三角形,分別是△ACD,△BCD,△ABC.
(2)∠1+∠A=90°,∠2=∠A,∠1=∠B.
ACD,△BCD,△ABC是直角三角形,且∠ADC、∠BDC、∠ACB是直角,∴∠1+∠A=90°,∠1+∠2=90°,∠B+∠A=90°∴∠2=∠A,∠1=∠B
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是某市一座人行天橋的示意圖,天橋離地面的高BC是10米,坡面10米處有一建筑物HQ,為了方便使行人推車過天橋,市政府部門決定降低坡度,使新坡面DC的傾斜角∠BDC=30°,若新坡面下D處與建筑物之間需留下至少3米寬的人行道,問該建筑物是否需要拆除(計(jì)算最后結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):=1.414,=1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明(在括號中填寫推理理由) 如圖,
已知∠A=∠F,∠C=∠D,求證:BD∥CE.
證明:因?yàn)椤螦=∠F,
所以AC∥DF(),
所以∠C+∠=180°().
因?yàn)椤螩=∠D,
所以∠D+∠=180°(),
所以BD∥CE().
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF∥AD,AD∥BC,∠DAC=120°.
(1)若AB平分∠DAC,求∠ABC的度數(shù).
(2)若∠ACF=20°,求∠BCF的度數(shù).
(3)在(2)的條件下,若CE平分∠BCF,求∠CEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,A(﹣2,1)、B(﹣4,﹣2)、C(﹣1,﹣3),△A′B′C′是△ABC平移之后得到的圖象,并且C的對應(yīng)點(diǎn)C′的坐標(biāo)為(4,1)
(1)A′、B′兩點(diǎn)的坐標(biāo)分別為A′、B′;
(2)作出△ABC平移之后的圖形△A′B′C′;
(3)求△A′B′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù):3,4,6,7,8,8,下列說法正確的是( )
A.眾數(shù)是2
B.眾數(shù)是8
C.中位數(shù)是6
D.中位數(shù)是7
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com