如圖,在平面直角坐標系中,已知拋物線軸于兩點,交軸于點.

(1)求此拋物線的解析式;
(2)若此拋物線的對稱軸與直線交于點D,作⊙D與x軸相切,⊙D交軸于點E、F兩點,求劣弧  的長;
(3)P為此拋物線在第二象限圖像上的一點,PG垂直于軸,垂足為點G,試確定P點的位置,使得△PGA的面積被直線AC分為1︰2兩部分.

(1)
(2)   (3)當點P坐標為時,
△PGA的面積被直線AC分成1︰2兩部分.    

解析試題分析:(1)∵拋物線經(jīng)過點,,
, 解得.
∴拋物線的解析式為:.           3分
(2)易知拋物線的對稱軸是.把x=4代入y=2x得y=8,∴點D的坐標為(4,8).
∵⊙D與x軸相切,∴⊙D的半徑為8.                    4分
連結(jié)DE、DF,作DM⊥y軸,垂足為點M.
在Rt△MFD中,F(xiàn)D=8,MD=4.
∴∠MDF=60°,∴∠EDF=120°.                   6分
∴劣弧EF的長為:.                7分
(3)設(shè)直線AC的解析式為y=kx+b. ∵直線AC經(jīng)過點.
,解得.∴直線AC的解析式為:.   8分
設(shè)點,PG交直線AC于N,
則點N坐標為.∵.
∴①若PN︰GN=1︰2,則PG︰GN=3︰2,PG=GN.
=.
解得:m1=-3, m2=2(舍去).
當m=-3時,=.
∴此時點P的坐標為.                   10分
②若PN︰GN=2︰1,則PG︰GN=3︰1, PG=3GN.
=.
解得:,(舍去).當時,=.
∴此時點P的坐標為.
綜上所述,當點P坐標為時,
△PGA的面積被直線AC分成1︰2兩部分.    
考點:圓與拋物線
點評:本題是圓與拋物線知識的題,本題考查用待定系數(shù)法求拋物線的解析式,直線與圓相交及相切,用待定系數(shù)法求直線與圓的交點,直線,圓,拋物線三者放在一起,是考試熱點

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習冊答案