分析 連結(jié)PB,由正方形的性質(zhì)得到BC=DC,∠BCP=∠DCP,接下來證明△CBP≌△CDP,于是得到DP=BP,然后證明四邊形BFPE是矩形,由矩形的對角線相等可得到BP=EF,從而等量代換可證得問題的答案.
解答 證明:連結(jié)PB.
∵四邊形ABCD是正方形,
∴BC=DC,∠BCP=∠DCP=45°.
∵在△CBP和△CDP中,
$\left\{\begin{array}{l}{BC=DC}\\{∠BCP=∠DCP}\\{PC=PC}\end{array}\right.$,
∴△CBP≌△CDP.
∴DP=BP.
∵PE⊥AB,PF⊥BC,∠B=90°
∴四邊形BFPE是矩形.
∴BP=EF.
∴DP=EF.
點評 本題主要考查的是正方形的性質(zhì)、全等三角形的性質(zhì)和判定、矩形的性質(zhì)和判定,證得四邊形BFPE為矩形是解題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 6個 | B. | 5個 | C. | 4個 | D. | 3個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | (4,0) | B. | (-2$\sqrt{2}$,0) | C. | (1,0) | D. | (2,0) |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com