【題目】請寫出任意一個經(jīng)過第一、二、四象限的一次函數(shù)解析式:_____________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1,x2是一元二次方程4kx2﹣4kx+k+2=0的兩個實數(shù)根.是否存在實數(shù)k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,請您說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y=-x,點A1坐標(biāo)為(-3,0). 過點A1作x軸的垂線交直線l于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸負(fù)半軸于點A2,再過點A2作x軸的垂線交直線l于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸負(fù)半軸于點A3,…,按此做法進(jìn)行下去,點A2016的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,已知函數(shù)y= (x>0)圖像上一點P,PA⊥x軸于點A(a,0),點B坐標(biāo)為(0,b)(b>0) .動點M是y軸正半軸上點B上方的點.動點N在射線AP上,過點B作AB的垂線,交射線AP于點D,交直線MN于點Q.連接AQ,取AQ的中點C.
(1)如圖2,連接BP,求△PAB的面積;
(2)當(dāng)點Q在線段BD上時, 若四邊形BQNC是菱形,面積為2,求此時P點的坐標(biāo).
(3)在(2)的條件下,在平面直角坐標(biāo)系中是否存在點S,使得以點D、Q、N、S為頂點的四邊形為平行四邊
形,如果存在,請直接寫出所有的點S的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分6分)如圖,一次函數(shù)y=kx+b的圖像與反比例函數(shù)y=的圖像相交于A、B兩點.
(1)利用圖中條件,求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖像寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.
(3)求出△AOB的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算題(共18分)
(1)(﹣8)﹣(+4)+(﹣6)﹣(﹣1)
(2)﹣2﹣1+(﹣16)﹣(﹣13);
(3);
(4)
(5) (用簡便方法計算);
(6)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com