如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=4cm,DC=6cm,試求AD的長.小萍同學(xué)靈活運用軸對稱知識,將圖形進(jìn)行翻折變換,巧妙地解答了此題.請按照她的思路回答下列問題:
(1)小萍分別以AB、AC所在的直線為對稱軸,畫出△ABD、△ACD的軸對稱圖形,D點的對稱點分別為點E、F,延長EB、FC相交于G點.試幫她證明四邊形AEGF是正方形;
(2)聯(lián)系(1)的結(jié)論,試求出AD的長.
分析:(1)先根據(jù)圖形翻折變換的性質(zhì)可知△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根據(jù)對稱的性質(zhì)得到AE=AF,從而說明四邊形AEGF是正方形;
(2)利用勾股定理,建立關(guān)于x的方程模型(x-4)2+(x-6)2=102,求出AD=x=12.
解答:(1)證明:∵△ABE由△ABD翻折而成,△ACF由△ACD翻折而成,
∴△ABD≌△ABE,△ACD≌△ACF.
∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°,
∴∠EAF=90°.
又∵AD⊥BC
∴∠E=∠ADB=90°,∠F=∠ADC=90°.
又∵AE=AD,AF=AD
∴AE=AF.
∴四邊形AEGF是正方形.
(2)解:設(shè)AD=x,則AE=EG=GF=x.
∵BD=4,DC=6
∴BE=4,CF=6
∴BG=x-4,CG=x-6
在Rt△BGC中,BG2+CG2=BC2
∴(x-4)2+(x-6)2=102,即x2-10x-24=0,解得x1=12,x2=-2(舍去)
∴AD=x=12.
點評:本題考查圖形的翻折變換和利用勾股定理,熟知折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在△ABC中,已知點D、E、F分別為邊BC,AD,CE的中點,且△ABC的面積是4,則△BEF的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,△ABC中,已知AB=AC,要使AD=AE,需要添加的一個條件是
BD=CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,已知AB=AC,△DEF是△ABC的內(nèi)接正三角形,α=∠BDF,β=∠CED,γ=∠AFE,則用β、γ表示α的關(guān)系式是
α=
β+γ
2
α=
β+γ
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,已知AB=AC,BD=DC,則∠ADB=
90°
90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

對同一圖形,從不同的角度看就會有不同的發(fā)現(xiàn),請根據(jù)右圖解決以下問題:
(1)如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,分別以AB、AC所在的直線為對稱軸,作出△ABD、△ACD的軸對稱圖形,點D的對稱點分別為E、F,延長EB、FC相交于G點,試證明四邊形AEGF是正方形;
(2)如圖,在邊長為12cm的正方形AEFG中,點B是邊EG上一點,將邊AE、AF分別沿AB、AC向內(nèi)翻折至AD處,則點B、D、C在一條直線上,若EB=4cm,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案