【題目】拋擲兩枚普通的正方體骰子,把兩枚骰子的點數(shù)相加,若第一枚骰子的點數(shù)為1,第二枚骰子的點數(shù)為5,則是“和為6”的一種情況,我們按順序記作(1,5),如果一個游戲規(guī)定擲出“和為6”時甲方贏,擲出“和為9”時乙方贏,則這個游戲________(填“公平”、“不公平”).
【答案】不公平
【解析】
列舉出所有情況,看“和為6”及“和為9”情況數(shù)占所有情況數(shù)的多少即可.
解:如圖所示:
(1,6) | (2,6) | (3,6) | (4,6) | (5,6) | (6,6) |
(1,5) | (2,5) | (3,5) | (4,5) | (5,5) | (6,5) |
(1,4) | (2,4) | (3,4) | (4,4) | (5,4) | (6,4) |
(1,3) | (2,3) | (3,3) | (4,3) | (5,3) | (6,3) |
(1,2) | (2,2) | (3,2) | (4,2) | (5,2) | (6,2) |
(1,1) | (2,1) | (3,1) | (4,1) | (5,1) | (6,1) |
共有36種情況,和為6情況數(shù)是5種,所以甲贏的概率為;和為9的情況數(shù)有4種,所以概率為 .
∵>,
∴不公平.
故答案為:不公平.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.
(1)求∠ADC的度數(shù);
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,E在CD上,將△ADE沿AE翻折至△AD'E,且AD'剛好過BC的中點P,則∠D'EC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,過點C(0,6)的直線AC與直線OA相交于點A(4,2),動點M在線段OA和射線AC上運動,試解決下列問題:
(1)求直線AC的解析式;
(2)求△OAC的面積;
(3)是否存在點M、使△OMC的面積是△OAC的面積的?若存在,求出此時點M的坐標;若不存在,請說明理由?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下說法合理的是( )
A. 小明在10次拋圖釘?shù)脑囼炛邪l(fā)現(xiàn)3次釘朝上,由此他說釘尖朝上的概率是30%
B. 拋擲一枚普通的正六面體骰子,出現(xiàn)6的概率是的意思是每6次就有1次擲得6
C. 某彩票的中獎機會是2%,那么如果買100張彩票一定會有2張中獎
D. 在一次課堂進行的拋擲硬幣試驗中,某同學(xué)估計硬幣落地后,正面朝上的概率為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲班56人,其中身高在160厘米以上的男同學(xué)10人,身高在160厘米以上的女同學(xué)3人,乙班80人,其中身高在160厘米以上的男同學(xué)20人,身高在160厘米以上的女同學(xué)8人.如果想在兩個班的160厘米以上的女生中抽出一個作為旗手,在哪個班成功的機會大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明、小軍兩同學(xué)做游戲,游戲規(guī)則是:一個不透明的文具袋中,裝有型號完全相同的3支紅筆和2支黑筆,兩人先后從袋中取出一支筆(不放回),若兩人所取筆的顏色相同,則小明勝,否則,小軍勝.
(1)請用樹形圖或列表法列出摸筆游戲所有可能的結(jié)果;
(2)請計算小明獲勝的概率,并指出本游戲規(guī)則是否公平,若不公平,你認為對誰有利.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線L:y=x2+bx﹣2與x軸相交于A、B兩點(點A在點B的左側(cè)),并與y軸相交于點C.且點A的坐標是(﹣1,0).
(1)求該拋物線的函數(shù)表達式及頂點D的坐標;
(2)判斷△ABC的形狀,并求出△ABC的面積;
(3)將拋物線向左或向右平移,得到拋物線L′,L′與x軸相交于A'、B′兩點(點A′在點B′的左側(cè)),并與y軸相交于點C′,要使△A'B′C′和△ABC的面積相等,求所有滿足條件的拋物線的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,△ABC是格點三角形(三角形的三個頂點都是小正方形的頂點).
(1)在第一象限內(nèi)找一點P,以格點P、A、B為頂點的三角形與△ABC相似但不全等,請寫出符合條件格點P的坐標;
(2)請用直尺與圓規(guī)在第一象限內(nèi)找到兩個點M、N,使∠AMB=∠ANB=∠ACB.請保留作圖痕跡,不要求寫畫法.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com