試題分析:解:(1)∵直線y=-2x-2與x軸交于點A,與y軸交于點C
∴A(-1,0) C(0,-2)
設拋物線的解析式為y=ax
2+bx+c
∵拋物線經過點A、C、E
∴
∴
36a+6b+c=7 c=-2
∴
(2)在拋物線上取一點M,作MN//y軸交AE于點N
設點M的橫坐標為a,則縱坐標為
∵ MN//y軸
∴點N的橫坐標為a
設AE的解析式y="k" x+ b,把A(-1,0) E(6,7)代入y="k" x+ b中得
解得:
∴y=x+1
∵N在直線AE上,∴N(a ,a+1)
∴MN= a+1-(
)= a+1-
+
+2=-
+
+3
∴MN=
=
a=
=
過點E作EH⊥x軸于點H
∴S△AME=
, M(
,
)
(3)過點E作EF⊥X軸于點F,過點D作DM⊥X軸于點M
∵A(一1,0) B(4,0) E(6,7)
∴AO="1" BO=4 FO=6 FE=7 AB=5
∴AF=FE=7 ∠EAB=45
O AE=
=
∵D (1,-3 ) ∴DM=3 OM=1 MB=3
∴DM=MB=3 ∴∠MBD=45
O∴∠EAB=∠MBD BD=
=
過點D作∠
=∠AEB交X軸于點
∴ΔABE∽BD
AE:
B=AB:BD
:
="5:"
=
=
-OB=
-4=
(-
, 0)
過點D作∠
=∠ABE交X軸于點
∴ΔABE∽Δ
∴DB:AE=
:AB
:
=
:5
=
∴
=4-
=
(
,0)
點評:此種類型,通過畫圖,數形結合,是來解決二次函數與幾何綜合問題的關鍵.