精英家教網 > 初中數學 > 題目詳情
已知:直線y=-2x-2與x軸交于點A,與y軸交于點C,拋物線經過點A、C、E,且點E(6,7)

(1)求拋物線的解析式.
(2)在直線AE的下方的拋物線取一點M使得構成的三角形AME的面積最大,請求出M點的坐標及△AME的最大面積.
(3)若拋物線與x軸另一交點為B點,點P在x軸上,點D(1,-3),以點P、B、D為頂點的三角形與△AEB相似,求點P的坐標.
(1) ;
(2)M(),S△AME=
(3),0)

試題分析:解:(1)∵直線y=-2x-2與x軸交于點A,與y軸交于點C
∴A(-1,0)   C(0,-2)
設拋物線的解析式為y=ax2+bx+c
∵拋物線經過點A、C、E
 ∴
36a+6b+c=7     c=-2

(2)在拋物線上取一點M,作MN//y軸交AE于點N
設點M的橫坐標為a,則縱坐標為 
∵ MN//y軸 
∴點N的橫坐標為a
設AE的解析式y="k" x+ b,把A(-1,0)   E(6,7)代入y="k" x+ b中得
   解得:  ∴y=x+1
∵N在直線AE上,∴N(a ,a+1)           
∴MN= a+1-()= a+1-++2=-++3
∴MN==    a==
過點E作EH⊥x軸于點H
∴S△AME=,    M(,
(3)過點E作EF⊥X軸于點F,過點D作DM⊥X軸于點M
∵A(一1,0)  B(4,0)   E(6,7)
∴AO="1" BO=4   FO=6  FE=7  AB=5
∴AF=FE=7   ∠EAB=45O  AE==
∵D (1,-3 )  ∴DM=3    OM=1   MB=3
∴DM=MB=3   ∴∠MBD=45O
∴∠EAB=∠MBD  BD==
   
過點D作∠=∠AEB交X軸于點
∴ΔABE∽BD
AE:B=AB:BD
 : ="5:"
=
=-OB=-4=
(-, 0)
過點D作∠=∠ABE交X軸于點
∴ΔABE∽Δ
∴DB:AE=:AB
=:5
=
=4-=
,0)
點評:此種類型,通過畫圖,數形結合,是來解決二次函數與幾何綜合問題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:填空題

將拋物線y=+3向右平移2個單位后,得到的新拋物線解析式是    

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,正方形OABC的邊長為2cm,點A、C別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經過點A、B,最低點為M,且S△AMB.

(1)求此拋物線的解析式,并說明這條拋物線是由拋物線y=ax2怎樣平移得到的;
(2)如果點P由點A開始沿著射線AB以2cm/s的速度移動,同時點Q由點B開始沿BC邊以1cm/s的速度向點C移動,當其中一點到達終點時運動結束;
①在運動過程中,P、Q兩點間的距離是否存在最小值,如果存在,請求出它的最小值;
②當PQ取得最小值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是梯形? 如果存在,求出R點的坐標,如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(本題10分)如圖,矩形OBCD的邊OD、OB分別在x軸正半軸和y軸負半軸上,且OD=10,OB=8.將矩形的邊BC繞點B逆時針旋轉,使點C恰好與x軸上的點A重合.

(1)直接寫出點A、B的坐標:A(    ,     )、B(     ,     );
(2)若拋物線y=-x2+bx+c經過點A、B,請求出這條拋物線的解析式;
(3)當≤x≤7,在拋物線上存在點P,使△ABP的面積最大,那么△ABP最大面積是                                 .(請直接寫出結論,不需要寫過程)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:如圖,拋物線)與軸交于點( 0,4) ,與軸交于點,,點的坐標為(4,0).

(1) 求該拋物線的解析式;
(2) 點是線段上的動點,過點,交于點,連接. 當的面積最大時,求點的坐標;
(3)若平行于軸的動直線與該拋物線交于點,與直線交于點,點的坐標為(2,0). 問: 是否存在這樣的直線,使得是等腰三角形?若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=x2﹣2x+c的頂點A在直線l:y=x﹣5上.

(1)求拋物線頂點A的坐標;
(2)設拋物線與y軸交于點B,與x軸交于點C.D(C點在D點的左側),試判斷△ABD的形狀;
(3)是否存在一點P,使以點P、A.B.D為頂點的四邊形是平行四邊形?若存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,二次函數,當時自變量x的取值范圍是      

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知二次函數的圖象與x軸有交點,求k的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

二次函數的頂點坐標是           

查看答案和解析>>

同步練習冊答案