【題目】如圖,點C在線段AB上,△DAC和△DBE都是等邊三角形.
(1)求證:△DAB≌△DCE;
(2)BD、CE交于點F,若∠ADB為鈍角,在不添加任何輔助線的情況下,直接寫出圖中所有不是60°且相等的銳角.
【答案】
(1)解:證明:∵△DAC,△DBE都是等邊三角形,
∴DE=DB,DC=DA,∠EDB=∠CDA=60°,
∴∠EDC=∠BDA,
在△EDC和△BDA中,
,
∴△EDC≌△BDA.
(2)解:不是60°且相等的銳角有:∠DEF=∠FBC,∠FDC=∠FEB,∠DFC=∠EFB=∠CBE.
【解析】(1)由△DAC,△DBE都是等邊三角形,可知DE=DB,DC=DA,∠EDB=∠CDA=60°,推出∠EDC=∠BDA,根據(jù)SAS即可證明.(2)根據(jù)全等三角形的對應(yīng)角相等.對頂角相等等知識即可判斷.
【考點精析】關(guān)于本題考查的等邊三角形的性質(zhì),需要了解等邊三角形的三個角都相等并且每個角都是60°才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,濕地景區(qū)岸邊有三個觀景臺A、B、C,已知AB=1400米,AC=1000米,B點位于A點的南偏西60.7°方向,C點位于A點的南偏東66.1°方向.
(1)求△ABC的面積;
(2)景區(qū)規(guī)劃在線段BC的中點D處修建一個湖心亭,并修建觀景棧道AD,試求A、D間的距離.(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41, ≈1.414).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點P,直線BF與AD的延長線交于點F,且∠AFB=∠ABC.
(1)求證:直線BF是⊙O的切線.
(2)若CD=2 ,OP=1,求線段BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】道外區(qū)勞技學(xué)校為了調(diào)整重點學(xué)科建設(shè)和師資配備,對學(xué)校開設(shè)的四個傳統(tǒng)重點學(xué)科開展學(xué)生較喜愛的學(xué)科調(diào)查問卷活動(每名學(xué)生必選且只選一項).如圖是在某中學(xué)調(diào)查的數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計圖,解答下列問題:
(1)求參與本次調(diào)查的共有多少名學(xué)生?并補全條形統(tǒng)計圖.
(2)在扇形統(tǒng)計圖中,求喜愛“葫蘆烙畫”所對應(yīng)的扇形的圓心角的度數(shù)?
(3)若道外區(qū)大約有12000名中學(xué)生,估計喜歡“陶藝”的共有多少名學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)活動課上小芳,在Rt△ABC中,∠C=90°,以頂點A為圓心,適當(dāng)長為半徑畫弧,分別交AC,AB于點M,N,再分別以點M,N為圓心,大于 MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D,若CD=8,AB=30,請你幫助她算一下△ABD的面積是( )
A.150
B.130
C.240
D.120
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,已知在矩形ABCD中,AB=60cm,BC=90cm,點P從點A出發(fā),以3cm/s的速度沿AB運動;同時,點Q從點B出發(fā),以20cm/s的速度沿BC運動.當(dāng)點Q到達點C時,P、Q兩點同時停止運動.設(shè)點P、Q運動的時間為t(s).
(1)當(dāng)t=s時,△BPQ為等腰三角形;
(2)當(dāng)BD平分PQ時,求t的值;
(3)如圖②,將△BPQ沿PQ折疊,點B的對應(yīng)點為E,PE、QE分別與AD交于點F、G.
探索:是否存在實數(shù)t,使得AF=EF?如果存在,求出t的值:如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某微店銷售甲、乙兩種商品,賣出6件甲商品和4件乙商品可獲利120元;賣出10件甲商品和6件乙商品可獲利190元.
(1)甲、乙兩種商品每件可獲利多少元?
(2)若該微店甲、乙兩種商品預(yù)計再次進貨200件,全部賣完后總獲利不低于2300元,已知甲商品的數(shù)量不少于120件.請你幫忙設(shè)計一個進貨方案,使總
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某玩具廠生產(chǎn)一種玩具,本著控制固定成本,降價促銷的原則,使生產(chǎn)的玩具能夠全部售出.據(jù)市場調(diào)查,若按每個玩具280元銷售時,每月可銷售300個.若銷售單價每降低1元,每月可多售出2個.據(jù)統(tǒng)計,每個玩具的固定成本Q(元)與月產(chǎn)銷量y(個)滿足如下關(guān)系:
月產(chǎn)銷量y(個) | … | 160 | 200 | 240 | 300 | … |
每個玩具的固定成本Q(元) | … | 60 | 48 | 40 | 32 | … |
(1)每月產(chǎn)銷量y(個)與銷售單價x(元)之間的函數(shù)關(guān)系式為; 從上表可知,每個玩具的固定成本Q(元)與月產(chǎn)銷量y(個)之間滿足反比例函數(shù)關(guān)系式,求出Q與y之間的關(guān)系式;
(2)若每個玩具的固定成本為30元,求它的銷售單價是多少元?
(3)若該廠這種玩具的月產(chǎn)銷量不超過400個,求此時銷售單價最低為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com