【題目】如圖,在平面直角坐標(biāo)系中,將坐標(biāo)原點(diǎn)沿軸向左平移個(gè)單位長度得到點(diǎn),過點(diǎn)作軸的平行線交反比例函數(shù)的圖象于點(diǎn),.
(1)求反比例函數(shù)的解析式;
(2)若、是該反比例函數(shù)圖象上的兩點(diǎn),且時(shí),,指出點(diǎn)、各位于哪個(gè)象限?并簡要說明理由.
【答案】(1);(2)P在第二象限,Q在第三象限,理由見解析.
【解析】
試題分析:(1)求出點(diǎn)B坐標(biāo)即可解決問題;
(2)結(jié)論:P在第二象限,Q在第三象限.利用反比例函數(shù)的性質(zhì)即可解決問題;
試題解析:(1)由題意B(﹣2,),
把B(﹣2,)代入中,得到k=﹣3,
∴反比例函數(shù)的解析式為.
(2)結(jié)論:P在第二象限,Q在第三象限.
理由:∵k=﹣3<0,∴反比例函數(shù)y在每個(gè)象限y隨x的增大而增大,
∵P(x1,y1)、Q(x2,y2)是該反比例函數(shù)圖象上的兩點(diǎn),且x1<x2時(shí),y1>y2,
∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD與過點(diǎn)C的切線互相垂直,垂足為點(diǎn)D,AD交⊙O于點(diǎn)E,連接CE,CB.
(1)求證:CE=CB;
(2)若AC=,CE=,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題:
①平行四邊形的對邊相等;
②對角線相等的四邊形是矩形;
③正方形既是軸對稱圖形,又是中心對稱圖形;
④一條對角線平分一組對角的平行四邊形是菱形.
其中真命題的個(gè)數(shù)是( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為組織代表隊(duì)參加市“拜炎帝、誦經(jīng)典”吟誦大賽,初賽后對選手成績進(jìn)行了整理,分成5個(gè)小組(表示成績,單位:分).組:;組:;組:;組:;組:,并繪制如圖兩幅不完整的統(tǒng)計(jì)圖.
請根據(jù)圖中信息,解答下列問題:
(1)參加初賽的選手共有 名,請補(bǔ)全頻率分布直方圖;
(2)扇形統(tǒng)計(jì)圖中,組對應(yīng)的圓心角是多少度?組人數(shù)占參賽選手的百分比是多少?
(3)學(xué)校準(zhǔn)備組成8人的代表隊(duì)參加市級(jí)決賽,組6名選手直接進(jìn)入代表隊(duì),現(xiàn)要從組中的兩名男生和兩名女生中,隨機(jī)選取兩名選手進(jìn)入代表隊(duì),請用列表或畫樹狀圖的方法,求恰好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別是可活動(dòng)的菱形和平行四邊形學(xué)具,已知平行四邊形較短的邊與菱形的邊長相等.
(1)在一次數(shù)學(xué)活動(dòng)中,某小組學(xué)生將菱形的一邊與平行四邊形較短邊重合,擺拼成如圖1所示的圖形,經(jīng)過點(diǎn),連接交于點(diǎn),觀察發(fā)現(xiàn):點(diǎn)是的中點(diǎn).
下面是兩位學(xué)生有代表性的證明思路:
思路1:不需作輔助線,直接證三角形全等;
思路2:不證三角形全等,連接交于點(diǎn).、
……
請參考上面的思路,證明點(diǎn)是的中點(diǎn)(只需用一種方法證明);
(2)如圖2,在(1)的條件下,當(dāng)時(shí),延長、交于點(diǎn),求的值;
(3)在(2)的條件下,若(為大于的常數(shù)),直接用含的代數(shù)式表示的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以△ABC的一邊為邊畫等腰三角形,使得它的第三個(gè)頂點(diǎn)在△ABC的其他邊上,則可以畫出的不同的等腰三角形的個(gè)數(shù)最多為( 。
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連結(jié)BD,BE.以下四個(gè)結(jié)論:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④∠ACE=∠DBC其中結(jié)論正確的個(gè)數(shù)有( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,且交BF于點(diǎn)C,BD平分∠ABF,且交AE于點(diǎn)D,連接CD.
(1)求證:四邊形ABCD是菱形;
(2)若∠ADB=30°,BD=6,求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com