試題分析:(1)連接OD,如圖1所示,由OD=OC,根據(jù)等邊對等角得到一對角相等,再由∠DOB為△COD的外角,利用三角形的外角等于與它不相鄰的兩個內(nèi)角之和,等量代換可得出∠DOB=2∠DCB,又∠A=2∠DCB,可得出∠A=∠DOB,又∠ACB=90°,可得出直角三角形ABC中兩銳角互余,等量代換可得出∠B與∠ODB互余,即OD垂直于BD,確定出AB為圓O的切線,得證;
(2)法1:過O作OM垂直于CD,根據(jù)垂徑定理得到M為DC的中點,由BD垂直于OD,得到三角形BDO為直角三角形,再由BE=OE=OD,得到OD等于OB的一半,可得出∠B=30°,進而確定出∠DOB=60°,又OD=OC,利用等邊對等角得到一對角相等,再由∠DOB為三角形DOC的外角,利用外角的性質(zhì)及等量代換可得出∠DCB=30°,在三角形CMO中,根據(jù)30°角所對的直角邊等于斜邊的一半得到OC=2OM,由弦心距OM的長求出OC的長,進而確定出OD及OB的長,利用勾股定理即可求出BD的長;
法2:過O作OM垂直于CD,連接ED,由垂徑定理得到M為CD的中點,又O為EC的中點,得到OM為三角形EDC的中位線,利用三角形中位線定理得到OM等于ED的一半,由弦心距OM的長求出ED的長,再由BE=OE,得到ED為直角三角形DBO斜邊上的中線,利用直角三角形斜邊上的中線等于斜邊的一半,由DE的長求出OB的長,再由OD及OB的長,利用勾股定理即可求出BD的長.
試題解析:(1)證明:連接OD,如圖1所示:
∵OD=OC,
∴∠DCB=∠ODC,
又∠DOB為△COD的外角,
∴∠DOB=∠DCB+∠ODC=2∠DCB,
又∵∠A=2∠DCB,
∴∠A=∠DOB,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠DOB+∠B=90°,
∴∠BDO=90°,
∴OD⊥AB,
又∵D在⊙O上,
∴AB是⊙O的切線;
(2)解法一:
過點O作OM⊥CD于點M,如圖1,
∵OD=OE=BE=
BO,∠BDO=90°,
∴∠B=30°,
∴∠DOB=60°,
∵OD=OC,
∴∠DCB=∠ODC,
又∵∠DOB為△ODC的外角,
∴∠DOB=∠DCB+∠ODC=2∠DCB,
∴∠DCB=30°,
∵在Rt△OCM中,∠DCB=30°,OM=1,
∴OC=2OM=2,
∴OD=2,BO=BE+OE=2OE=4,
∴在Rt△BDO中,根據(jù)勾股定理得:BD=
;
解法二:
過點O作OM⊥CD于點M,連接DE,如圖2,
∵OM⊥CD,
∴CM=DM,又O為EC的中點,
∴OM為△DCE的中位線,且OM=1,
∴DE=2OM=2,
∵在Rt△OCM中,∠DCB=30°,OM=1,
∴OC=2OM=2,
∵Rt△BDO中,OE=BE,
∴DE=
BO,
∴BO=BE+OE=2OE=4,
∴OD=OE=2,
在Rt△BDO中,根據(jù)勾股定理得BD=
.
考點: 1.切線的判定;2.含30度角的直角三角形;3.垂徑定理;4圓周角定理.