(2010•仙桃)如圖,Rt△BDE中,∠BDE=90°,BC平分∠DBE交DE于點(diǎn)C,AC⊥CB交BE于點(diǎn)A,△ABC的外接圓的半徑為r.
(1)若∠E=30°,求證:BC•BD=r•ED;
(2)若BD=3,DE=4,求AE的長(zhǎng).

【答案】分析:(1)取AB中點(diǎn)O,由題意得△ABC是Rt△,O是外接圓心,連接CO,可證得OC∥DB,則,即OC•DE=CE•BD;作CF⊥BE,然后證得∠CBE=∠E=30°,根據(jù)等角對(duì)等邊的性質(zhì)可得CE=BC,則可得BC•BD=r•ED;
(2)根據(jù)勾股定理求出BE,設(shè)CE=x,則BC=x,在Rt△BCD中,根據(jù)勾股定理求出x,再推得CE為圓的切線(xiàn),利用切割線(xiàn)定理求出AE的值.
解答:(1)證明:取AB中點(diǎn)O,△ABC是Rt△,AB是斜邊,O是外接圓心,連接CO,
∴BO=CO,∠BCO=∠OBC,
∵BC是∠DBE平分線(xiàn),
∴∠DBC=∠CBA,
∴∠OCB=∠DBC,
∴OC∥DB,(內(nèi)錯(cuò)角相等,兩直線(xiàn)平行),
,把比例式化為乘積式得BD•CE=DE•OC,
∵OC=r,
∴BD•CE=DE•r.
∵∠D=90°,∠E=30°,
∴∠DBE=60°,
∴∠CBE=∠DBE=30°,
∴∠CBE=∠E,
∴CE=BC,
∴BC•BD=r•ED.

(2)解:BD=3,DE=4,根據(jù)勾股定理,BE=5,
設(shè)圓的半徑長(zhǎng)是r,則OC=OA=r,
∵OC∥DB,
∴△OCE∽BDE,
==,即==
解得:OE=r,CE=r.
CH==r,
∵BC平分∠DBE交DE于點(diǎn)C,則△BDC≌△BHC,
∴BH=BD=3,
則HE=2.
∴CD=CH=r.
在直角△CHE中,根據(jù)勾股定理得:CH2+EH2=CE2,
即(r)2+22=(r)2,解得:r=,
則AE=BE-2r=5-=
點(diǎn)評(píng):本題考查的是切割線(xiàn)定理,切線(xiàn)的性質(zhì)定理,勾股定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(04)(解析版) 題型:填空題

(2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點(diǎn)A的坐標(biāo)為(0,1),在AD邊上有一點(diǎn)E(2,1),過(guò)點(diǎn)E的直線(xiàn)與BC交于點(diǎn)F.若EF平分矩形ABCD的面積,則直線(xiàn)EF的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•仙桃)如圖,平面直角坐標(biāo)系中,點(diǎn)A、B、C在x軸上,點(diǎn)D、E在y軸上,OA=OD=2,OC=OE=4,DB⊥DC,直線(xiàn)AD與經(jīng)過(guò)B、E、C三點(diǎn)的拋物線(xiàn)交于F、G兩點(diǎn),與其對(duì)稱(chēng)軸交于M.點(diǎn)P為線(xiàn)段FG上一個(gè)動(dòng)點(diǎn)(與F、G不重合),PQ∥y軸與拋物線(xiàn)交于點(diǎn)Q.
(1)求經(jīng)過(guò)B、E、C三點(diǎn)的拋物線(xiàn)的解析式;
(2)是否存在點(diǎn)P,使得以P、Q、M為頂點(diǎn)的三角形與△AOD相似?若存在,求出滿(mǎn)足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若拋物線(xiàn)的頂點(diǎn)為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:填空題

(2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點(diǎn)A的坐標(biāo)為(0,1),在AD邊上有一點(diǎn)E(2,1),過(guò)點(diǎn)E的直線(xiàn)與BC交于點(diǎn)F.若EF平分矩形ABCD的面積,則直線(xiàn)EF的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省江漢油田中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•仙桃)如圖,平面直角坐標(biāo)系中,點(diǎn)A、B、C在x軸上,點(diǎn)D、E在y軸上,OA=OD=2,OC=OE=4,DB⊥DC,直線(xiàn)AD與經(jīng)過(guò)B、E、C三點(diǎn)的拋物線(xiàn)交于F、G兩點(diǎn),與其對(duì)稱(chēng)軸交于M.點(diǎn)P為線(xiàn)段FG上一個(gè)動(dòng)點(diǎn)(與F、G不重合),PQ∥y軸與拋物線(xiàn)交于點(diǎn)Q.
(1)求經(jīng)過(guò)B、E、C三點(diǎn)的拋物線(xiàn)的解析式;
(2)是否存在點(diǎn)P,使得以P、Q、M為頂點(diǎn)的三角形與△AOD相似?若存在,求出滿(mǎn)足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若拋物線(xiàn)的頂點(diǎn)為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省江漢油田中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點(diǎn)A的坐標(biāo)為(0,1),在AD邊上有一點(diǎn)E(2,1),過(guò)點(diǎn)E的直線(xiàn)與BC交于點(diǎn)F.若EF平分矩形ABCD的面積,則直線(xiàn)EF的解析式為   

查看答案和解析>>

同步練習(xí)冊(cè)答案