如圖,在扇形OAB中,∠AOB=110°,半徑OA=12,將扇形OAB沿過點B的直線折疊,點O恰好落在
AB
上的點D處,折痕交OA于點C,求
AD
的長.
分析:連結OD,先根據(jù)折疊的性質得到BC垂直平分OD,則BD=BO,易得△OBD為等邊三角形,所以∠DOB=60°,則∠AOD=∠AOB-∠DOB=50°,然后根據(jù)弧長公式求解.
解答:解:連結OD,如圖,
∵扇形OAB沿過點B的直線折疊,點O恰好落在
AB
上的點D處,折痕交OA于點C
∴BC垂直平分OD,
∴BD=BO,
∵OB=OD,
∴△OBD為等邊三角形,
∴∠DOB=60°,
∴∠AOD=∠AOB-∠DOB=110°-60°=50°,
AD
的長度=
50•π•12
180
=
10π
3
點評:本題考查了折疊的性質:折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.也考查了弧長公式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在扇形OAB中,OP⊥AB于點P,半徑為4,OP=2.
(1)求AB的長;
(2)求∠AOB的度數(shù);
(3)求扇形OAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•吉林)如圖,在扇形OAB中,∠AOB=90°,半徑OA=6.將扇形OAB沿過點B的直線折疊,點O恰好落在
AB
上點D處,折痕交OA于點C,求整個陰影部分的周長和面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•平頂山二模)如圖,在扇形OAB中,∠AOB=90°,半徑OA=6.將沿過點B的直線折疊,點O恰好落
AB
上點D處,折痕交OA于點C,求整個陰影部分的面積為
9π-12
3
9π-12
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•老河口市模擬)如圖,在扇形OAB中,∠AOB=120°,OA=2,以A為圓心,AO長為半徑畫弧交
AB
于點C,則圖中陰影部分的面積為
3
3

查看答案和解析>>

同步練習冊答案