精英家教網(wǎng)已知:如圖,BD、CE都是△ABC的高.F是BD上一點(diǎn),G是CE延長(zhǎng)線上一點(diǎn),∠FAB=∠G.
(1)若∠FAD=∠FBC,試說(shuō)明AG∥BC;
(2)若BF=AC,試探索線段AF和AG的關(guān)系,并說(shuō)明理由.
分析:(1)首先根據(jù)已知條件求證出關(guān)于直線AG,BC的內(nèi)錯(cuò)角∠G=∠ECB,則滿足AG∥BC的條件;
(2)根據(jù)平行線的性質(zhì)和已知條件求證出△BAF≌△CGA,則得到AF=AG,然后通過(guò)等量代換求出∠GAF=90°所以AG⊥AF.
解答:解:(1)設(shè)BD、CE交于O,
∵BD、CE是高,
∴∠BEO=∠CDO=90°,
∴∠BOE+∠EBO=∠COD+∠OCD=90°,
∵∠BOE=∠COD,
∴∠EBO=∠OCD,
∵∠EBO+∠FBC+∠ECB=90°,
∠FAD+∠BAF+∠OCD=90°,
∵∠FAD=∠FBC,
∴∠ECB=∠BAF,
∵∠BAF=∠G,
∴∠G=∠ECB,
∴AG∥BC;

(2)AF⊥AG,AF=AG.
∵在△BAF和△CGA中,
∠ABF=∠GCA
∠BAF=∠G
BF=AC
,
∴△BAF≌△CGA(AAS),
∴AF=AG,
在Rt△AGE中,
∵∠AEG=90°,
∴∠G+∠GAE=90°,
∵∠G=∠BAF,
∴∠GAE+∠BAF=90°,
即∠GAF=90°,
∴AG⊥AF.
點(diǎn)評(píng):本題綜合考查了平行線的性質(zhì),平行線的判定條件,全等三角形的判定條件,以及垂直定理;做題時(shí)要熟練應(yīng)用這些知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,BD是AC邊上的高,DE⊥BC于E,BE:EC=5:1.若AD=2,AB=8.
求:CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,BD平分∠ABC,CE平分∠ACE,BD與CE交于點(diǎn)I,試說(shuō)明∠BIC=90°+
12
∠A.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、已知,如圖,BD是∠ABC的平分線,AB=BC,點(diǎn)P在BD上,PM⊥AD,PN⊥CD,垂足分別是M、N.試說(shuō)明:PM=PN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,BD為⊙O的直徑,點(diǎn)A是劣弧BC的中點(diǎn),AD交BC于點(diǎn)E,連接AB.
(1)求證:AB2=AE•AD;
(2)過(guò)點(diǎn)D作⊙O的切線,與BC的延長(zhǎng)線交于點(diǎn)F,若AE=2,ED=4,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,BD、CE是△ABC的兩條高,M是BC的中點(diǎn).求證:ME=MD.

查看答案和解析>>

同步練習(xí)冊(cè)答案