【題目】先閱讀理解下面的例題,再按要求解答下列問(wèn)題:

解方程(2﹣6(+5=0

解:令=y,代入原方程后,得:

y2﹣6y+5=0

(y﹣5)(y﹣1)=0

解得:y1=5 y2=1

=y

=5=1

①當(dāng)=1時(shí),方程可變?yōu)椋?/span>

x=5(x﹣1)

解得x=

②當(dāng)=1時(shí),方程可變?yōu)椋?/span>

x=x﹣1

此時(shí),方程無(wú)解

檢驗(yàn):將x=代入原方程,

最簡(jiǎn)公分母不為0,且方程左邊=右面

x=是原方程的根

綜上所述:原方程的根為:x=

根據(jù)以上材料,解關(guān)于x的方程x2++x+=0.

【答案】x=﹣1.

【解析】

先變形,設(shè)x+=a,則原方程化為a2+a2=0求出a的值,再代入求出x的值最后進(jìn)行檢驗(yàn)即可

x2++x+=0,(x+2+x+2=0設(shè)x+=a,則原方程化為a2+a2=0

解得a=﹣21

當(dāng)a=﹣2時(shí),x+=﹣2x2+2x+1=0,解得x=﹣1;

當(dāng)a=1時(shí),x+=1,x2x+1=0,此方程無(wú)解

經(jīng)檢驗(yàn)x=﹣1是原方程的解,所以原方程的解為x=﹣1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【問(wèn)題情境】

課外興趣小組活動(dòng)時(shí),老師提出了如下問(wèn)題:

如圖①,ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.

小明在組內(nèi)經(jīng)過(guò)合作交流,得到了如下的解決方法:延長(zhǎng)AD至點(diǎn)E,使DEAD,連接BE.請(qǐng)根據(jù)小明的方法思考:

(1)由已知和作圖能得到ADC≌△EDB,依據(jù)是

A.SSS B.SAS C.AAS D.HL

(2)由三角形的三邊關(guān)系可求得AD的取值范圍是

解后反思:題目中出現(xiàn)中點(diǎn)”、“中線等條件,可考慮延長(zhǎng)中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集中到同一個(gè)三角形之中.

【初步運(yùn)用】

如圖②,ADABC的中線,BEACE,交ADF,且AEEF.若EF=3,EC=2,求線段BF的長(zhǎng).

【靈活運(yùn)用】

如圖③,在ABC中, A=90°,DBC中點(diǎn), DEDFDEAB于點(diǎn)E,DFAC于點(diǎn)F,連接EF.試猜想線段BE、CF、EF三者之間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,點(diǎn)DABC的邊BC上,AB=AC=CD,AD=BD,求ABC各內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCAB、AC的垂直平分線的交點(diǎn)D恰好落在BC邊上

(1)判斷ABC的形狀

(2)若點(diǎn)A在線段DC的垂直平分線上,求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABACEFEG,ABCEFG,ADBC于點(diǎn)D,EHFG于點(diǎn)H

(1) 直接寫(xiě)出AD、EH的數(shù)量關(guān)系:___________________

(2) EFG沿EH剪開(kāi),讓點(diǎn)E和點(diǎn)C重合

按圖2放置EHG,將線段CD沿EH平移至HN,連接AN、GN,求證:ANGN

按圖3放置EHG,BCE)、H三點(diǎn)共線,連接AGEH于點(diǎn)M.若BD1AD3,求CM的長(zhǎng)度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C=90°,AB=10cm,BC=6cm,若動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始出發(fā),按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒2cm,設(shè)出發(fā)的時(shí)間為t秒.

1)填空:AC= cm;

2)若點(diǎn)P恰好在∠ABC的角平分線上,求t的值;

3)當(dāng)t為何值時(shí),BPC為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,三角形ABC三個(gè)頂點(diǎn)A,BC的坐標(biāo)分別為A1,2),B43),C3,1.把三角形A1B1C1向右平移4個(gè)單位長(zhǎng)度,再向下平移3個(gè)單位長(zhǎng)度,恰好得到三角形ABC,試寫(xiě)出三角形A1B1C1三個(gè)頂點(diǎn)的坐標(biāo),作出三角形ABC向右平移1個(gè)單位向下平移2個(gè)單位的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,按以下步驟作圖:

①以B為圓心,任意長(zhǎng)為半徑作弧,交AB于D,交BC于E;

②分別以DE為圓心,以大于DE的同樣長(zhǎng)為半徑作弧,兩弧交于點(diǎn)F;

③作射線BFACG.

如果BG=CG,∠A=60°,那么∠ACB的度數(shù)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明的爸爸在魚(yú)池邊開(kāi)了一塊四邊形土地種了一些蔬菜,爸爸讓小明計(jì)算這塊土地的面積,以便估算產(chǎn)值,小明測(cè)得AB=4m,BC=3m,CD=13m.DA=12m.又已知∠B=90°,每平方米投入資金80元,預(yù)計(jì)銷售后產(chǎn)值每平方米480元,試求出這塊土地能產(chǎn)生多少利潤(rùn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案