【題目】已知拋物線與軸交于點。
(1)拋物線的頂點坐標為_____________,點坐標為____________;(用含的代數(shù)式表示);
(2)當時,拋物線上有一動點,設點橫坐標為,且。
①若點到軸的距離為2時,求點的坐標;
②設拋物線在點與點之間部分(含點和點)最高點與最低點縱坐標之差為,求與之間的函數(shù)關系式,并寫出自變量的取值范圍;
(3)若點,連結,當拋物線與線段只有一個交點時,直接寫出的取值范圍。
【答案】(1)頂點,點;(2)①或;②;(3)或.
【解析】
(1)把拋物線配方成頂點式即得拋物線的頂點坐標;求當x=0時對應的y值即可得出點C坐標;
(2)①先把m=1代入即得拋物線的解析式,進而可表示出點P的坐標,然后根據(jù)點到軸的距離為2可得關于n的方程,解方程即可求得結果;
②先求得點P、C和頂點D的坐標,再結合圖象:如圖1、2、3,分情況討論寫出即可;
(3)根據(jù)題意,先求出拋物線與直線y=2的兩個交點,然后結合圖象即可得出m須滿足的不等式組,解不等式組即可求出結果.
解:(1),當x=0時,,
∴頂點,點;
(2)①當時,,∴,
令,解得,∴,
令,解得,(舍),∴,
綜上:點P坐標是或;
②,頂點D的坐標,
當時,如圖1,;
當時,如圖2,;
當時,如圖3,;
綜上,與之間的函數(shù)關系式是:;
(3)∵,∴AB∥x軸,
當y=2時,,解得:,即拋物線與直線y=2的兩個交點為與,
因為拋物線與線段只有一個交點,如圖4、圖5,
所以m須滿足:或,
解得:或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AD=4,E在AB上且AB=4BE,連接CE,作BF⊥CE于F,正方形對角線交于O點,連接OF,將△COF沿CE翻折得△CGF,連接BG,則BG的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】己知反比例函數(shù)(常數(shù),).
(1)若點在這個函數(shù)的圖象上,求的值;
(2)若在這個函數(shù)圖象的每一個分支上,隨的增大而增大,求的取值范圍;
(3)若,試判斷點是否在這個函數(shù)的圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,O為坐標原點,A、B兩點的坐標分別為(﹣3,0)、(0,4),拋物線y=x2+bx+c經(jīng)過B點,且頂點在直線y=上.
(1)求拋物線對應的函數(shù)關系式;
(2)若△DCE是由△ABO沿x軸向右平移得到的,當四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由.
(3)在(2)的條件下,若M點是CD所在直線下方該拋物線上的一個動點,過點M作MN平行于y軸交CD于點N.設點M的橫坐標為t,MN的長度為s,求s與t之間的函數(shù)關系式,寫出自變量t的取值范圍,并求s取大值時,點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,矩形ABCD的邊AB:BC=3:2,點A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)(x>0)的圖像經(jīng)過點D,則值為( )
A. ﹣14 B. 14 C. 7 D. ﹣7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料,完成(1)~(3)題.
數(shù)學課上,老師出示了這樣一道題:
如圖1,△ABC中,AC=BC=a,∠ACB=90°,點D在AB上,且AD=kAB(其中0<k<),直線CD繞點D順時針旋轉(zhuǎn)90°與直線CB繞點B逆時針旋轉(zhuǎn)90°后相交于點E,探究線段DC、DE的數(shù)量關系,并證明.
同學們經(jīng)過思考后,交流了自己的想法:
小明:“通過觀察和度量,發(fā)現(xiàn)DC與DE相等”;
小偉:“通過構造全等三角形,經(jīng)過進一步推理,可以得到DC與DE相等”
小強:“通過進一步的推理計算,可以得到BE與BC的數(shù)量關系”
老師:“保留原題條件,連接CE交AB于點O.如果給出BO與DO的數(shù)量關系,那么可以求出COEO的值”
(1)在圖1中將圖補充完整,并證明DC=DE;
(2)直接寫出線段BE與BC的數(shù)量關系 (用含k的代數(shù)式表示);
(3)在圖2中將圖補充完整,若BO=DO,求COEO的值(用含a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場欲購進果汁飲料和碳酸飲料共60箱,兩種飲料每箱的進價和售價如下表所示。設購進果汁飲料x箱(x為正整數(shù)),且所購進的兩種飲料能全部賣出,獲得的總利潤為W元(注:總利潤=總售價-總進價)。
(1)設商場購進碳酸飲料y箱,直接寫出y與x的函數(shù)解析式;
(2)求總利潤w關于x的函數(shù)解析式;
(3)如果購進兩種飲料的總費用不超過2100元,那么該商場如何進貨才能獲利最多?并求出最大利潤。
飲料 | 果汁飲料 | 碳酸飲料 |
進價(元/箱) | 40 | 25 |
售價(元/箱) | 52 | 32 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在上,經(jīng)過圓心的線段于點,與交于點.
(1)如圖1,當半徑為,若,求弦的長;
(2)如圖2,當半徑為 ,,若,求弦的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是二次函數(shù)圖象的一部分,在下列結論中:①;②;③有兩個相等的實數(shù)根;④;其中正確的結論有( 。
A.1個B.2 個C.3 個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com