如圖,一位籃球運(yùn)動(dòng)員跳起投籃,球沿拋物線(xiàn)y=-
1
5
x2+3.5運(yùn)行,然后準(zhǔn)確落入籃框內(nèi).已知籃框的中心離地面的距離為3.05米.
(1)球在空中運(yùn)行的最大高度為多少米?
(2)如果該運(yùn)動(dòng)員跳投時(shí),球出手離地面的高度為2.25米,請(qǐng)問(wèn)他距離籃框中心的水平距離是多少?
(1)因?yàn)閽佄锞(xiàn)y=-
1
5
x2+3.5的頂點(diǎn)坐標(biāo)為(0,3.5)
所以球在空中運(yùn)行的最大高度為3.5米;(2分)

(2)當(dāng)y=3.05時(shí),3.05=-
1
5
x2+3.5,
解得:x=±1.5
又因?yàn)閤>0
所以x=1.5(3分)
當(dāng)y=2.25時(shí),
x=±2.5
又因?yàn)閤<0
所以x=-2.5,
由|1.5|+|-2.5|=1.5+2.5=4米,
故運(yùn)動(dòng)員距離籃框中心水平距離為4米.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:m是非負(fù)數(shù),拋物線(xiàn)y=x2-2(m+1)x-(m+3)的頂點(diǎn)Q在直線(xiàn)y=-2x-2上,且和x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求A、B、Q三點(diǎn)的坐標(biāo).
(2)如果點(diǎn)P的坐標(biāo)為(1,1).求證:PA和直線(xiàn)y=-2x-2垂直.
(3)點(diǎn)M(x,1)在拋物線(xiàn)上,判斷∠AMB和∠BAQ的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線(xiàn)y=ax2+bx+c(a≠0)與x軸交于A(1,0)、B(4,0)兩點(diǎn),與y軸交于C(0,2),連接AC、BC.
(1)求拋物線(xiàn)解析式;
(2)BC的垂直平分線(xiàn)交拋物線(xiàn)于D、E兩點(diǎn),求直線(xiàn)DE的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)y=
1
2
x2-mx+2m-
7
2

(1)試說(shuō)明:無(wú)論m為何實(shí)數(shù),該拋物線(xiàn)與x軸總有兩個(gè)不同的交點(diǎn).
(2)如圖,當(dāng)拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=3時(shí),拋物線(xiàn)的頂點(diǎn)為點(diǎn)C,直線(xiàn)y=x-1與拋物線(xiàn)交于A、B兩點(diǎn),并與它的對(duì)稱(chēng)軸交于點(diǎn)D.
①拋物線(xiàn)上是否存在一點(diǎn)P使得四邊形ACPD是正方形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
②平移直線(xiàn)CD,交直線(xiàn)AB于點(diǎn)M,交拋物線(xiàn)于點(diǎn)N,通過(guò)怎樣的平移能使得以C、D、M、N為頂點(diǎn)的四邊形是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線(xiàn)y=ax2+bx+c(其中b>0,c<0)的頂點(diǎn)P在x軸上,與y軸交于點(diǎn)Q,過(guò)坐標(biāo)原點(diǎn)O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,以A為頂點(diǎn)的拋物線(xiàn)與y軸交于點(diǎn)B、已知A、B兩點(diǎn)的坐標(biāo)分別為(3,0)、(0,4).
(1)求拋物線(xiàn)的解析式;
(2)設(shè)M(m,n)是拋物線(xiàn)上的一點(diǎn)(m、n為正整數(shù)),且它位于對(duì)稱(chēng)軸的右側(cè).若以M、B、O、A為頂點(diǎn)的四邊形四條邊的長(zhǎng)度是四個(gè)連續(xù)的正整數(shù),求點(diǎn)M的坐標(biāo);
(3)在(2)的條件下,試問(wèn):對(duì)于拋物線(xiàn)對(duì)稱(chēng)軸上的任意一點(diǎn)P,PA2+PB2+PM2>28是否總成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,半徑為1的動(dòng)圓P圓心在拋物線(xiàn)y=(x-2)2-1上,當(dāng)⊙P與x軸相切時(shí),點(diǎn)P的坐標(biāo)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某涵洞的截面是拋物線(xiàn)型,如圖所示,在圖中建立的直角坐標(biāo)系中,拋物線(xiàn)的解析式為y=-
1
4
x2,當(dāng)涵洞水面寬AB為12米時(shí),水面到橋拱頂點(diǎn)O的距離為_(kāi)_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

兩個(gè)直角邊為6的全等的等腰直角三角形Rt△AOB和Rt△CED,按如圖一所示的位置放置,點(diǎn)O與E重合.
(1)Rt△AOB固定不動(dòng),Rt△CED沿x軸以每秒2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),當(dāng)點(diǎn)E運(yùn)動(dòng)到與點(diǎn)B重合時(shí)停止,設(shè)運(yùn)動(dòng)x秒后,Rt△AOB和Rt△CED的重疊部分面積為y,求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)Rt△CED以(1)中的速度和方向運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間x=2秒時(shí),Rt△CED運(yùn)動(dòng)到如圖二所示的位置,若拋物線(xiàn)y=
1
4
x2+bx+c過(guò)點(diǎn)A,G,求拋物線(xiàn)的解析式;
(3)現(xiàn)有一動(dòng)點(diǎn)P在(2)中的拋物線(xiàn)上運(yùn)動(dòng),試問(wèn)點(diǎn)P在運(yùn)動(dòng)過(guò)程中是否存在點(diǎn)P到x軸或y軸的距離為2的情況?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案