【題目】下列命題是真命題的是( )
A. 對(duì)角線相等且互相垂直的四邊形是菱形 B. 有一邊與兩角相等的兩三角形全等
C. 對(duì)角線相等的四邊形是矩形 D. 有一組鄰邊相等且垂直的平行四邊形是正方形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子中裝有僅顏色不同的個(gè)小球,其中紅球個(gè),黑球個(gè).
(1)先從袋中取出個(gè)紅球,再從袋子中隨機(jī)摸出個(gè)球,將“摸出黑球”記為事件,填空:若為必然事件,則m的值為 ,若為隨機(jī)事件,則m的值為 .
(2)若從袋中隨機(jī)摸出個(gè)球,求摸出的球恰好是個(gè)紅球和個(gè)黑球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校數(shù)學(xué)綜合實(shí)踐小組的同學(xué)以“綠色出行”為主題,把某小區(qū)的居民對(duì)共享單車的了解和使用情況進(jìn)行了問卷調(diào)查.在這次調(diào)查中,發(fā)現(xiàn)有20人對(duì)于共享單車不了解,使用共享單車的居民每天騎行路程不超過8千米,并將調(diào)查結(jié)果制作成統(tǒng)計(jì)圖,如下圖所示:
(1)本次調(diào)查人數(shù)共 人,使用過共享單車的有 人;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果這個(gè)小區(qū)大約有3000名居民,請(qǐng)估算出每天的騎行路程在2~4千米的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式 =1﹣ , = ﹣ , = ﹣ ,將以這三個(gè)等式兩邊分別相加得: + + =1﹣ + ﹣ + ﹣ =1﹣ = .
(1)猜想并寫出: = .
(2)直接寫出下列各式的計(jì)算結(jié)果: + + +…+ = .
(3)探究并計(jì)算: + + +…+ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰△ABC中,三邊分別為a、b、c,其中a=4,b、c恰好是方程x2﹣(2k+1)x+5(k﹣ )=0的兩個(gè)實(shí)數(shù)根,則△ABC的周長為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料: 如圖1,在數(shù)軸上A點(diǎn)衰示的數(shù)為a,B點(diǎn)表示的數(shù)為b,則點(diǎn)A到點(diǎn)B的距離記為AB.線段AB的長可以用右邊的數(shù)減去左邊的數(shù)表示,即AB﹣b﹣a.
請(qǐng)用上面的知識(shí)解答下面的問題:
如圖2,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開始,先向左移動(dòng)1cm到達(dá)A點(diǎn),再向左移動(dòng)2cm到達(dá)B點(diǎn),然后向右移動(dòng)7cm到達(dá)C點(diǎn),用1個(gè)單位長度表示1cm.
(1)請(qǐng)你在數(shù)軸上表示出A.B.C三點(diǎn)的位置:
(2)點(diǎn)C到點(diǎn)人的距離CA=cm;若數(shù)軸上有一點(diǎn)D,且AD=4,則點(diǎn)D表示的數(shù)為;
(3)若將點(diǎn)A向右移動(dòng)xcm,則移動(dòng)后的點(diǎn)表示的數(shù)為;(用代數(shù)式表示)
(4)若點(diǎn)B以每秒2cm的速度向左移動(dòng),同時(shí)A.C點(diǎn)分別以每秒1cm、4cm的速度向右移動(dòng).設(shè)移動(dòng)時(shí)間為t秒, 試探索:CA﹣AB的值是否會(huì)隨著t的變化而改變?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過邊長為3的等邊△ABC的邊AB上一點(diǎn)P,作PE⊥AC于E,Q為BC延長線上一點(diǎn),且CQ=PA,連接PQ交AC于點(diǎn)D,則DE的長為( 。
A.1
B.
C.2
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.
解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,
∴(m﹣n)2+(n﹣4)2=0,又∵(m﹣n)2≥0,(n﹣4)2≥0,
∴ , ∴n=4,m=4.
請(qǐng)解答下面的問題:
(1)已知x2﹣2xy+2y2+6y+9=0,求xy﹣x2的值;
(2)已知△ABC的三邊長a、b、c都是互不相等的正整數(shù),且滿足a2+b2﹣4a﹣18b+85=0,求△ABC的最大邊c的值;
(3)已知a2+b2=12,ab+c2﹣16c+70=0,求a+b+c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)x=3時(shí),下列不等式成立的是( )
A. x+2>5 B. x-1<2
C. x>-3 D. 2x-1>5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com