【題目】某聯(lián)歡會上有一個有獎游戲,規(guī)則如下:有5張紙牌,背面都是喜羊羊頭像,正面有2張是笑臉,其余3張是哭臉.現(xiàn)將5張紙牌洗勻后背面朝上擺放到桌上,若翻到的紙牌中有笑臉就有獎,沒有笑臉就沒有獎.
(1)小芳獲得一次翻牌機會,她從中隨機翻開一張紙牌.小芳得獎的概率是.
(2)小明獲得兩次翻牌機會,他同時翻開兩張紙牌.小明認為這樣得獎的概率是小芳的兩倍,你贊同他的觀點嗎?請用樹形圖或列表法進行分析說明.
【答案】
(1)解: (或填0.4)
(2)解:不贊同他的觀點.
用 、 分別代表兩張笑臉, 、 、 分別代表三張哭臉,根據(jù)題意列表如下:
, | , | , | , | ||
, | , | , | , | ||
, | , | , | , | ||
, | , | , | , | ||
, | , | , | , |
(也可畫樹形圖表示)由表格可以看出,可能的結(jié)果有20種,其中得獎的結(jié)果有14種,因此小明得獎的概率 因為 < ,所以小明得獎的概率不是小芳的兩倍.
【解析】利用概率公式可求出關(guān)注的結(jié)果,機會均等的結(jié)果,二者相除即可;(2)時間分為兩個步驟,第一步驟5種情況,第2步驟4種情況,共20種情況,關(guān)注的結(jié)果有14種,并不是小芳的兩倍.
科目:初中數(shù)學 來源: 題型:
【題目】已知兩直線L1:y=k1x+b1 , L2:y=k2x+b2 , 若L1⊥L2 , 則有k1k2=﹣1.
(1)應(yīng)用:已知y=2x+1與y=kx﹣1垂直,求k;
(2)直線經(jīng)過A(2,3),且與y= x+3垂直,求解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形中,,為上一動點,交于,過作交于點,過作于,連結(jié).在以下四個結(jié)論中:①;②;③;④的周長為12.其中正確的結(jié)論有__________(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:
對于任意一個三位數(shù)正整數(shù)n,如果n的各個數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“陌生數(shù)”,將一個“陌生數(shù)”的三個數(shù)位上的數(shù)字交換順序,可以得到5個不同的新“陌生數(shù)”,把這6個陌生數(shù)的和與111的商記為M(n).例如n=123,可以得到132.213.231.312.321這5個新的“陌生數(shù)”,這6個“陌生數(shù)”的和為123+132+213+231+312+321=1332,因為,所以M(123)=12.
(1)計算:M(125)和M(361)的值;
(2)設(shè)s和t都是“陌生數(shù)”,其中4和2分別是s的十位和個位上的數(shù)字,2和5分別是t的百位和個位上的數(shù)字,且t的十位上的數(shù)字比s的百位上的數(shù)字小2;規(guī)定:.若,則k的值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在銳角△ABC中,∠BAC=60,BD、CE為高,F(xiàn)為BC的中點,連接DE、DF、EF,則結(jié)論:①DF=EF;②AD∶AB=AE∶AC;③△DEF是等邊三角形;④BE+CD=BC;⑤當∠ABC=45時,BE=DE中,一定正確的有 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD,軸,點的坐標為,點的坐標為,點是四邊形ABCD邊上的一個動點.
(1)若四邊形ABCD是菱形,求點的坐標.
(2)如圖1,若,點在第四象限內(nèi)
①若點在邊,上,點關(guān)于坐標軸對稱的點落在直線上,求點的坐標.
②若點在邊,,上,點是與軸的交點,如圖2,過點作軸的平行線,過點作軸的平行線,它們相交于點,將沿直線翻折,當點的對應(yīng)點落在坐標軸上時,求點的坐標.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,己知點C是線段BD上一點,以BC、 DC為一邊在BD的同一側(cè)作等邊△ABC和等邊△ECD,連接AD, BE相交于點F, AC和BE交于點M, AD, CE交于點N,(注:等邊三角形的每一個內(nèi)角都等于60° )
(1) 求證: AD=BE
(2) 線段CM與CN相等嗎?請證明你的結(jié)論。
(3) 求∠BFD的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形中,,點分別從點同時出發(fā),點以的速度由點向點運動,點以的速度由點向點運動設(shè)運動時間為.當__________.時,為平行四邊形的一邊.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,AB⊥BC,AB=BC,AB>CD,AE⊥BD于E交BC于F.
(1)若AB=2CD;
①求證:BC=2BF;
②連CE,若DE=6,CE=,求EF的長;
(2)若AB=6,則CE的最小值為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com