如圖,在△ABC中,∠C=900,D是AC上一點,DE⊥AB于點E,若AC=8,BC=6,DE=3,則AD的長為(  )

A.3B.4C.5D.6

C

解析試題分析:再Rt△ABC中,先根據(jù)勾股定理求得AB的長,再證得△ABC∽△ADE,根據(jù)相似三角形的性質即可求得結果.
∵∠C=900,AC=8,BC=6

∵∠C=900,DE⊥AB,∠A=∠A
∴△ABC∽△ADE
,即,解得
故選C.
考點:勾股定理,相似三角形的判定和性質
點評:解答本題的關鍵是熟練掌握相似三角形的對應邊成比例,注意對應字母在對應位置上.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案