【題目】已知直線AB經過⊙O上的點C,且OA=OB,CA=CB.
(1)直線AB是⊙O的切線嗎?請說明理由;
(2)若⊙O的直徑為8cm,AB=10cm,求OA的長.(結果保留根號)
科目:初中數學 來源: 題型:
【題目】如圖1,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)設拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
(3)在(1)中拋物線的對稱軸上是否存在點Q,使得△QAC的周長最。咳舸嬖,求出Q點的坐標;若不存在,請說明理由.
(4)如圖2,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC關于原點對稱的△A1B1C1,并寫出點B1,C1的坐標;
(2)在x軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】南海是我國的南大門,如圖所示,某天我國一艘海監(jiān)執(zhí)法船在南海海域正在進行常態(tài)化巡航,在A處測得北偏東30°方向上,距離為20海里的B處有一艘不明身份的船只正在向正東方向航行,便迅速沿北偏東75°的方向前往監(jiān)視巡查,經過一段時間后,在C處成功攔截不明船只,問我海監(jiān)執(zhí)法船在前往監(jiān)視巡查的過程中行駛了多少海里(最后結果保留整數)?
(參考數據:cos75°=0.2588,sin75°=0.9659,tan75°=3.732, =1.732, =1.414)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在中,,,.過點作,動點在射線上(點不與重合),聯(lián)結并延長到點,使.
(1)求的面積;
(2)設,,求關于的函數解析式,并寫出的取值范圍;
(3)連接,如果是直角三角形,求的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著通訊技術迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數學興趣小組設計了“你最喜歡的溝通方式”調查問卷(每人必選且只選一種),在全校范圍內隨機調查了部分學生,將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:
(1)這次統(tǒng)計共抽查了 名學生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數為 ;
(2)將條形統(tǒng)計圖補充完整;
(3)該校共有1500名學生,請估計該校最喜歡用“微信”進行溝通的學生有多少名?
(4)某天甲、乙兩名同學都想從“微信”、“QQ”、“電話”三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學恰好選中同一種溝通方式的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,兩個全等的△ABC和△DEF中,∠ACB=∠DFE=90°,AB=DE,其中點B和點D重合,點F在BC上,將△DEF沿射線BC平移,設平移的距離為x,平移后的圖形與△ABC重合部分的面積為y,y關于x的函數圖象如圖2所示(其中0≤x≤m,m<x≤3,3<x≤4時,函數的解析式不同)
(1)填空:BC的長為_____;
(2)求y關于x的函數關系式,并寫出x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A. “擲一枚硬幣正面朝上的概率是”表示每拋硬幣2次就有1次正面朝上
B. 一組數據2,2,3,6的眾數和中位數都是2
C. 要了解全市人民的低碳生活狀況,適宜采用抽樣調查的方法
D. 隨機抽取甲、乙兩名同學的5次數學成績,計算得平均分都是90分,方差分別是S2甲=5,S2乙=12,說明乙的成績較為穩(wěn)定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,從地面上的點A看一山坡上的電線桿PQ,測得桿頂端點P的仰角是45°,向前走6m到達B點,測得桿頂端點P和桿底端點Q的仰角分別是60°和30°.
(1)求∠BPQ的度數;
(2)求該電線桿PQ的高度(結果精確到1m).備用數據:,
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com