【題目】某中學要在一塊三角形花圃里種植兩種不同的花草,同時擬從A點修建一條小路到邊BC

1)若要使修建小路所用的材料最少,請在下圖中畫出小路AD;

2)若要使小路兩側(cè)種植不同花草的面積相等,請在下圖中畫出小路AE,其中E點滿足的條件是________,并說明理由.

【答案】(1)詳見解析;(2)點E為線段BC的中點,理由詳見解析

【解析】

1)根據(jù)垂線段的性質(zhì),可得答案;
2)根據(jù)三角形中線的性質(zhì),可得答案.

1)如圖所示,過點AADBC于點D,由“垂線段最短”可知,小路AD是所用材料最少的.

2)點E為線段BC的中點.如圖所示,找出線段BC的中點E,連接AE,AE即為所要求的小路的路徑.

理由:∵對它們的底邊來說具有相同的高,同設為h

又∵EBC的中點,即

即修建小路AE可以確保兩側(cè)種植不同花草的面積相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AEBD,CFBD,垂足分別為E,F(xiàn).

(1)求證:ABE≌△CDF;

(2)若AC與BD交于點O,求證:AO=CO.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為測量一座山峰CF的高度,將此山的某側(cè)山坡劃分為AB和BC兩段,每一段山坡近似是“直”的,測得坡長AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.

(1)求AB段山坡的高度EF;

(2)求山峰的高度CF.(1.414,CF結(jié)果精確到米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公交公司決定更換節(jié)能環(huán)保的新型公交車購買的數(shù)量和所需費用如下表所示:

A型數(shù)量

B型數(shù)量

所需費用萬元

3

1

450

2

3

650

A型和B型公交車的單價;

該公司計劃購買A型和B型兩種公交車共10輛,已知每輛A型公交車年均載客量為60萬人次,每輛B型公交車年均載客量為100萬人次,若要確保這10輛公交車年均載客量總和不少于670萬人次,則A型公交車最多可以購買多少輛?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某銷售商計劃購進甲、乙兩種商品共件進行銷售.已知甲種商品每件進價元,乙種商品每件進價元;通過市場考察,銷售商決定甲種商品以每件元的價格出售,乙種商品以每件元的價格出售.設銷售商購進的甲種商品有件,銷售完甲、乙兩種商品后獲得的總利潤為

的函數(shù)關系式;

如果銷售商購進的甲種商品的數(shù)量不少于乙種商品數(shù)量的倍,請求出獲利最大的進貨方案,所獲得的最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為射線AB上一點,AB30,ACBC5,PQ兩點分別從A,B兩點同時出發(fā).分別以2單位/秒和1單位/秒的速度在射線AB上沿AB方向運動,運動時間為t秒,MBP的中點,NQM的中點,以下結(jié)論:①BC2AC;②AB4NQ;③當PBBQ時,t12,其中正確結(jié)論的個數(shù)是( 。

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一座立交橋的示意圖(道路寬度忽略不計), A為入口, F,G為出口,其中直行道為AB,CGEF,且AB=CG=EF ;彎道為以點O為圓心的一段弧,且弧BC,弧ED,弧CD所對的圓心角均為90°.甲、乙兩車由A口同時駛?cè)肓⒔粯,均?/span>10m/s的速度行駛,從不同出口駛出. 其間兩車到點O的距離ym)與時間x(s)的對應關系如圖2所示.結(jié)合題目信息,下列說法錯誤的是( )

A. 甲車在立交橋上共行駛8s B. F口出比從G口出多行駛40m

C. 甲車從F口出,乙車從G口出 D. 立交橋總長為150m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市米廠接到加工大米任務,要求天內(nèi)加工完大米.米廠安排甲、乙兩車間共同完成加工任務,乙車間加工中途停工一段時間維修設備,然后改變加工效率繼續(xù)加工,直到與甲車間同時完成加工任務為止,設甲、乙兩車間各自加工大米數(shù)量與甲車間加工時間()之間的關系如圖1所示;未加工大米與甲車間加工時間()之間的關系如圖2所示,請結(jié)合圖像回答下列問題

(1)甲車間每天加工大米__________;=______________;

(2)直接寫出乙車間維修設備后,乙車間加工大米數(shù)量()之間的函數(shù)關系式,并指出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在每個邊長都為1的小正方形組成的網(wǎng)格中,點A、P分別為小正方形的中點,B為格點.

(I)線段AB的長度等于_____;

(Ⅱ)在線段AB上存在一個點Q,使得點Q滿足∠PQA=45°,請你借助給定的網(wǎng)格,并利用不帶刻度的直尺作出∠PQA,并簡要說明你是怎么找到點Q的:_____

查看答案和解析>>

同步練習冊答案