19、代數(shù)式x2-x與代數(shù)式A的和為-x2-x+1則代數(shù)式A=
-2x2+1
分析:本題相當于知道被減數(shù):-x2-x+1,減數(shù)x2-x,求差即可得出答案.
解答:解:A=-x2-x+1-(x2-x),
=-x2-x+1-x2+x,
=-2x2+1.
故答案為:-2x2+1.
點評:本題考查整式的加減,整式加減的本質(zhì)就是同類項合并,注意在運算是要細心.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)某課題組在探究“將軍飲馬問題”時抽象出數(shù)學模型:直線l同旁有兩個定點A、B,在直線l上存在點P,使得PA+PB的值最。夥ǎ鹤鼽cA關于直線l的對稱點A′,連接A′B,則A′B與直線l的交點即為P,且PA+PB的最小值為A′B.請利用上述模型解決下列問題:
(1)幾何應用:如圖1,等腰直角三角形ABC的直角邊長為2,E是斜邊AB的中點,P是AC邊上的一動點,則PB+PE的最小值為
 
;
(2)幾何拓展:如圖2,△ABC中,AB=2,∠BAC=30°,若在AC、AB上各取一點M、N使BM+MN的值最小,求這個最小值;
(3)代數(shù)應用:求代數(shù)式
x2+1
+
(4-x)2+4
(0≤x≤4)的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在直角坐標系xOy中,拋物線y=x2-2tx+t2-t(t>0)與x軸的兩個交點分別為A、B(A在B的左邊),直線l:y=kx經(jīng)過拋物線的頂點C,與拋物線的另一個交點為D.
(1)求拋物線的頂點C的坐標(用含t的代數(shù)表示),并求出直線l 的解析式;
(2)如圖①,當t=
1
4
時,探究AC與BD的位置關系,并說明理由;
(3)當t≠1時,設△ABC的面積為S1,△ABD的面積為S2,用含t的代數(shù)式表示
S1
S2
的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某課題組在探究“將軍飲馬問題”時抽象出數(shù)學模型:
直線l同旁有兩個定點A、B,在直線l上存在點P,使得PA+PB的值最。夥ǎ鹤鼽cA關于直線l的對稱點A′,連接A′B,則A′B與直線l的交點即為P,且PA+PB的最小值為A′B.

請利用上述模型解決下列問題:
(1)幾何應用:如圖1,等腰直角三角形ABC的直角邊長為2,E是斜邊AB的中點,P是AC邊上的一動點,則PB+PE的最小值為
10
10
;
(2)幾何拓展:如圖2,△ABC中,AB=2,∠BAC=30°,若在AC、AB上各取一點M、N使BM+MN的值最小,求這個最小值;
(3)代數(shù)應用:求代數(shù)式
x2+1
+
(4-x)2+4
(0≤x≤4)的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某課題組在探究“泵站問題”時抽象出數(shù)學模型:
直線l同旁有兩個定點A、B,在直線l上存在點P,使得PA+PB的值最。夥ǎ鹤鼽cA關于直線l的對稱點A′,連接A′B,則A′B與直線l的交點即為P,且PA+PB的最小值為A′B.
請利用上述模型解決下列問題:
(1)幾何應用:如圖1,等腰直角三角形ABC的直角邊長為2,E是斜邊AB的中點,P是AC邊上的一動點,則PB+PE的最小值為
 
;
(2)幾何拓展:如圖2,△ABC中,AB=2,∠BAC=30°,若在AC、AB上各取一點M、N使BM+MN的值最小,求這個最小值;
(3)代數(shù)應用:求代數(shù)式
x2+1
+
(4-x)2+4
(0≤x≤4)的最小值.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:2011年浙江省嘉興市平湖市九年級數(shù)學調(diào)研測試卷(解析版) 題型:解答題

在直角坐標系xOy中,拋物線y=x2-2tx+t2-t(t>0)與x軸的兩個交點分別為A、B(A在B的左邊),直線l:y=kx經(jīng)過拋物線的頂點C,與拋物線的另一個交點為D.
(1)求拋物線的頂點C的坐標(用含t的代數(shù)表示),并求出直線l 的解析式;
(2)如圖①,當時,探究AC與BD的位置關系,并說明理由;
(3)當t≠1時,設△ABC的面積為S1,△ABD的面積為S2,用含t的代數(shù)式表示的值.

查看答案和解析>>

同步練習冊答案