【題目】解方程
(1)(2x-1)2=25;
(2)x2-4x-1=0;
(3)3x(x-2)=2(2-x);
(4)x2-8x+12=0;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC,∠C=90°,AC=BC=a,在△ABC中截出一個正方形A1B1C1D1,使點A1,D1分別在AC,BC邊上,邊B1C1在AB邊上;在△BC1D1在截出第二個正方形A2B2C2D2,使點A2,D2分別在BC1,D1C1邊上,邊B2C2在BD1邊上;…,依此方法作下去,則第n個正方形的邊長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠C=90°,點E在斜邊AB上,以AE為直徑的⊙O與BC邊相切于點D,連結(jié)AD.
(1)求證:AD是∠BAC的平分線;
(2)若AC=3,BC=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,點A的坐標為(0,1),取一點B(b,0),連接AB,作線段AB的垂直平分線,過點B作X軸的垂線,記,的交點為P。
(1)當(dāng)b=3時,在圖1中補全圖形(尺規(guī)作圖,不寫作法,保留作圖痕跡)。
(2)小慧多次取不同數(shù)值b,得出相應(yīng)的點P,并把這些點用平滑的曲線連接起來,發(fā)現(xiàn):這些點P竟然在一條曲線L上。
①設(shè)點P的坐標為(x,y),試求y與x之間的關(guān)系式,并指出曲線L是哪種曲線。
②設(shè)點P到x軸,y軸的距離分別為,,求+的范圍。當(dāng)+=8時,求點P的坐標。
③將曲線在直線y=2下方的部分沿直線y=2向上翻折,得到一條“W”形狀的新曲線,若直線y=kx+3與這條“W”形狀的新曲線有4個交點,直接寫出k的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣5x+5與x軸、y軸分別交于A,C兩點,拋物線y=x2+bx+c經(jīng)過A,C兩點,與x軸交于另一點B.
(1)求拋物線解析式及B點坐標;
(2)x2+bx+c≥﹣5x+5的解集 .
(3)若點M在第一象限內(nèi)拋物線上一動點,連接MA、MB,當(dāng)點M運動到某一位置時,△ABM面積為△ABC的面積的倍,求此時點M的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=90°,BA=BC=2,將△ABC繞點C逆時針旋轉(zhuǎn)60°得到△DEC,連接BD,則BD2的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.它的代數(shù)成就主要包括開方術(shù)、正負術(shù)和方程術(shù).其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學(xué)成就.《九章算術(shù)》“勾股”一章記載:“今有戶高多于廣六尺八寸,兩隅相去適一丈.問戶高、廣各幾何?”譯文:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少?(1丈=10尺,1尺=10寸)設(shè)長方形門的寬尺,可列方程為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2-2x-2n=0有兩個不相等的實數(shù)根,若n<5,且方程的兩個實數(shù)根都是整數(shù),則n的值為( 。
A. n=2
B. n=0或n=1.5或n=4
C. n=4
D. n=0或n=1.5或n=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABDC中,∠ABD=120°,AB⊥AC,BD⊥CD,AB=8,CD=,則該四邊形的面積是_______.
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com