【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是

【答案】

【解析】

試題分析:如圖作EFBC于F,DN′⊥BC于N交EM于點O,此時MNO=90°,

DE是ABC中位線,DEBC,DE=BC=10,DN′∥EF,四邊形DEFN是平行四邊形,∵∠EFN=90°,四邊形DEFN是矩形,EF=DN,DE=FN=10,AB=AC,A=90°,∴∠B=C=45°,BN=DN=EF=FC=5,,即,解得DO=.當MON=90°時,∵△DOE∽△EFM,,根據(jù)勾股定理可得EM==13,DO=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC中,∠ABC=∠ACB,D為線段CB上一點(不與C,B重合),點E為射線CA上一點,∠ADE=∠AED,設∠BAD=α,∠CDE=β.
(1)如圖(1),
①若∠BAC=42°,∠DAE=30°,則α= , β=
②若∠BAC=54°,∠DAE=36°,則α= , β=
③寫出α與β的數(shù)量關系,并說明理由;
(2)如圖(2),當E點在CA的延長線上時,其它條件不變,請直接寫出α與β的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線MN與直線PQ垂直相交于O,點A在直線PQ上運動,點B在直線MN上運動.
(1)如圖1,已知AE、BE分別是∠BAO和∠ABO角的平分線,點A、B在運動的過程中,∠AEB的大小是否會發(fā)生變化?若發(fā)生變化,請說明變化的情況;若不發(fā)生變化,試求出∠AEB的大。
(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點A、B在運動的過程中,∠CED的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值.
(3)如圖3,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及延長線相交于E、F,在△AEF中,如果有一個角是另一個角的3倍,試求∠ABO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算的結果為a6的是(
A.a3+a3
B.(a33
C.a3a3
D.a12÷a2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四條直線兩兩相交,且任意三條不相交于同一點,則四條直線共可構成的同位角有

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若方程(m+2)x2+5x﹣7=0是關于x的一元二次方程,則m≠____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若函數(shù)y=mx2+2x+1的圖象與x軸只有一個公共點,則常數(shù)m的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a2=4,b3=-27,ab<0,a-b的值為( )

A. -2 B. ±5 C. 5 D. -5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了讓同學們了解自己的體育水平,初二1班的體育康老師對全班45名學生進行了一次體育模擬測試(得分均為整數(shù))成績滿分為10分,成績達到9分以上(包含9分)為優(yōu)秀,成績達到6分以上(包含6分)為合格,1班的體育委員根據(jù)這次測試成績,制作了統(tǒng)計圖和分析表如下:

初二1班體育模擬測試成績分析表

平均分

方差

中位數(shù)

眾數(shù)

合格率

優(yōu)秀率

男生

2

8

7

95%

40%

女生

7.92

1.99

8

96%

36%

根據(jù)以上信息,解答下列問題:
(1)在這次測試中,該班女生得10分的人數(shù)為4人,則這個班共有女生人;
(2)補全初二1班男生體育模擬測試成績統(tǒng)計圖,并把相應的數(shù)據(jù)標注在統(tǒng)計圖上;
(3)補全初二1班體育模擬測試成績分析表;
(4)你認為在這次體育測試中,1班的男生隊、女生隊哪個表現(xiàn)更突出一些?并寫出一條支持你的看法的理由;
(5)體育康老師說,從整體看,1班的體育成績在合格率方面基本達標,但在優(yōu)秀率方面還不夠理想,因此他希望全班同學繼續(xù)加強體育鍛煉,爭取在期末考試中,全班的優(yōu)秀率達到60%,若男生優(yōu)秀人數(shù)再增加6人,則女生優(yōu)秀人數(shù)再增加多少人才能完成康老師提出的目標?

查看答案和解析>>

同步練習冊答案