如圖,已知拋物線的頂點(diǎn)為,與軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左邊),點(diǎn)的橫坐標(biāo)是

(1)求點(diǎn)坐標(biāo)及的值;

(2)如圖1,拋物線與拋物線關(guān)于軸對(duì)稱,將拋物線向左平移,平移后的拋物線記為,的頂點(diǎn)為,當(dāng)點(diǎn)關(guān)于點(diǎn)成中心對(duì)稱時(shí),求的解析式;

(3)如圖2,點(diǎn)軸負(fù)半軸上一動(dòng)點(diǎn),將拋物線繞點(diǎn)旋轉(zhuǎn)后得到拋物線.拋物線的頂點(diǎn)為,與x軸相交于E、F兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),當(dāng)以點(diǎn)P、NE為頂點(diǎn)的三角形是直角三角形時(shí),求頂點(diǎn)的坐標(biāo).

解:(1)由拋物線C1得頂點(diǎn)P的坐標(biāo)為(2,5)………….1分

∵點(diǎn)A(-1,0)在拋物線C1上∴.………………2分

(2)連接PM,作PH⊥x軸于H,作MG⊥x軸于G..

∵點(diǎn)P、M關(guān)于點(diǎn)A成中心對(duì)稱,

∴PM過(guò)點(diǎn)A,且PA=MA..

∴△PAH≌△MAG..

∴MG=PH=5,AG=AH=3.

∴頂點(diǎn)M的坐標(biāo)為(,5).………………………3分

∵拋物線C2與C1關(guān)于x軸對(duì)稱,拋物線C3由C2平移得到

∴拋物線C3的表達(dá)式.  …………4分

(3)∵拋物線C4由C1繞x軸上的點(diǎn)Q旋轉(zhuǎn)180°得到

∴頂點(diǎn)N、P關(guān)于點(diǎn)Q成中心對(duì)稱.

 由(2)得點(diǎn)N的縱坐標(biāo)為5.

設(shè)點(diǎn)N坐標(biāo)為(m,5),作PH⊥x軸于H,作NG⊥x軸于G,作PR⊥NG于R.

∵旋轉(zhuǎn)中心Q在x軸上,

∴EF=AB=2AH=6.

 ∴EG=3,點(diǎn)E坐標(biāo)為(,0),H坐標(biāo)為(2,0),

R坐標(biāo)為(m,-5).

根據(jù)勾股定理,得

     

  

       

①當(dāng)∠PNE=90º時(shí),PN2+ NE2=PE2,

解得m=,∴N點(diǎn)坐標(biāo)為(,5)

②當(dāng)∠PEN=90º時(shí),PE2+ NE2=PN2,

解得m=,∴N點(diǎn)坐標(biāo)為(,5).

③∵PN>NR=10>NE,∴∠NPE≠90º  ………7分

綜上所得,當(dāng)N點(diǎn)坐標(biāo)為(,5)或(,5)時(shí),以點(diǎn)P、N、E為頂點(diǎn)的三角形是直角三角形.…………………………………………………………………………………8分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線C0的解析式為y=x2-(a+b)x+
c24
,其中a、b、c分別是△ABC中∠A、∠B、∠精英家教網(wǎng)C所對(duì)邊的長(zhǎng).
(1)求證:拋物線C0與x軸必有兩個(gè)交點(diǎn);
(2)設(shè)P、Q是拋物線C0與x軸的兩個(gè)交點(diǎn),求證:P、Q兩點(diǎn)總在x軸的正半軸上;
(3)設(shè)直線l:y=ax-bc與拋物線交于點(diǎn)E、F,與y軸交于點(diǎn)M,N為拋物線與y軸的交點(diǎn),直線x=a是拋物線的對(duì)稱軸,當(dāng)△MNE的面積是△MNF的面積的5倍時(shí),確定△ABC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線C1的解析式為y=-x2+2x+8,圖象與y軸交于D點(diǎn),并且頂點(diǎn)A在雙曲線上.
(1)求過(guò)頂點(diǎn)A的雙曲線解析式;
(2)若開口向上的拋物線C2與C1的形狀、大小完全相同,并且C2的頂點(diǎn)P始終在C1上,證明:拋物線C2一定經(jīng)過(guò)A點(diǎn);
(3)設(shè)(2)中的拋物線C2的對(duì)稱軸PF與x軸交于F點(diǎn),且與雙曲線交于E點(diǎn),當(dāng)D、O、E精英家教網(wǎng)、F四點(diǎn)組成的四邊形的面積為16.5時(shí),先求出P點(diǎn)坐標(biāo),并在直線y=x上求一點(diǎn)M,使|MD-MP|的值最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線m的解析式為y=x2-4,與x軸交于A、C兩點(diǎn),B是拋物線m上的動(dòng)點(diǎn)(B不與A、C重合),且B在x軸的下方,拋物線n與拋物線m關(guān)于x軸對(duì)稱,以AC為對(duì)角線的平行四邊形ABCD的第四個(gè)頂點(diǎn)為D.
(1)求證:點(diǎn)D一定在拋物線n上.
(2)平行四邊形ABCD能否為矩形?若能為矩形,求出這些矩形公共部分的面積(若只有一個(gè)矩形符合條件,則求此矩形的面積);若不能為矩形,請(qǐng)說(shuō)明理由.
(3)若(2)中過(guò)A、B、C、D的圓交y軸于E、F,而P是弧CF上一動(dòng)點(diǎn)(不包括C、F兩點(diǎn)),連接AP交y軸于N,連接EP交x軸于M.當(dāng)P在運(yùn)動(dòng)時(shí),四邊形AEMN的面積是否改變?若不變,則求其面積;若變化,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線C1的頂點(diǎn)坐標(biāo)是D(1,4),且經(jīng)過(guò)點(diǎn)C(2,3),又與x軸交于點(diǎn)A、E(點(diǎn)A在點(diǎn)E左邊),與y軸交于點(diǎn)B.
(1)拋物線C1的表達(dá)式是
y=-x2+2x+3
y=-x2+2x+3
;
(2)四邊形ABDE的面積等于
9
9
;
(3)問(wèn):△AOB與△DBE相似嗎?并說(shuō)明你的理由;
(4)設(shè)拋物線C1的對(duì)稱軸與x軸交于點(diǎn)F.另一條拋物線C2經(jīng)過(guò)點(diǎn)E(C2與C1不重合),且頂點(diǎn)為M(a,b),對(duì)稱軸與x軸交于點(diǎn)G,并且以M、G、E為頂點(diǎn)的三角形與以點(diǎn)D、E、F為頂點(diǎn)的三角形全等,求a、b的值.(只需寫出結(jié)果,不必寫解答過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線C1的解析式為y=-x2+2x+8,圖象與y軸交于D點(diǎn),并且頂點(diǎn)A在雙曲線上.
(1)求過(guò)頂點(diǎn)A的雙曲線解析式;
(2)若開口向上的拋物線C2與C1的形狀、大小完全相同,并且C2的頂點(diǎn)P始終在C1上,證明:拋物線C2一定經(jīng)過(guò)A點(diǎn);
(3)設(shè)(2)中的拋物線C2的對(duì)稱軸PF與x軸交于F點(diǎn),且與雙曲線交于E點(diǎn),當(dāng)D、O、E、F四點(diǎn)組成的四邊形的面積為16.5時(shí),先求出P點(diǎn)坐標(biāo),并在直線y=x上求一點(diǎn)M,使|MD-MP|的值最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案