(1)

求這個拋物線的解析式;

(2)

畫出該拋物線的草圖,并標(biāo)出圖象與x軸交點(diǎn)的橫坐標(biāo);

(3)

觀察你所畫的拋物線的草圖,寫出x在什么范圍內(nèi)取值時,函數(shù)值y<0

答案:
解析:

(1)

(2)

x=3或x=1;

(3)

x<1或x>3時,y<0。圖略


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)D,E分別是矩形OABC中AB和BC邊上的中點(diǎn),點(diǎn)B的坐標(biāo)為(6,4)
(1)寫出A,C,E,D四點(diǎn)的坐標(biāo);并判斷點(diǎn)O到直線DE的距離是否等于線段的OE長;
(2)動點(diǎn)F在線段DE上,F(xiàn)G⊥x軸于G,F(xiàn)H⊥y軸于H,求矩形面積最大時點(diǎn)F的坐標(biāo)(利用圖1解答);
(3)我們給出如下定義:分別過拋物向上的兩點(diǎn)(不在x軸上)作x軸的垂線,如果以這兩點(diǎn)及垂足為頂點(diǎn)的矩形在這條拋物線與x軸圍成的封閉圖形內(nèi)部,則稱這個矩形是這條拋物線的內(nèi)接矩形,請你理解上述定義,解答下面的問題:若矩形OABC是某個拋物線的周長最大的內(nèi)接矩形,求這個拋物線的解析式(利用圖2解答).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,某地一古城墻門洞呈拋物線形,已知門洞的地面寬度AB=12米,兩側(cè)距地面5米高C、D處各有一盞路燈,兩燈間的水平距離CD=8米,求這個門洞的高度.(提示:選擇適當(dāng)?shù)奈恢脼樵c(diǎn)建立直角坐標(biāo)系,例如圖:以AB的中點(diǎn)為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系.)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,某地一城墻門洞呈拋物線形,已知門洞的地面寬度AB=12米,兩側(cè)距地面5米高C、D處精英家教網(wǎng)各安裝一盞路燈,兩燈間的水平距離CD=8米,
(1)求這個門洞的高度
 

(2)現(xiàn)有體寬均約為0.5水,身高約為1.6米的20名同學(xué)想要手挽手成一排橫向通過該城門,請你測算,他們能否通過?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•泰州一模)如圖是一個拋物線形橋洞示意圖,河底線AB長為20m,水面距河底線的高度為1.9m,此時水面寬CD為18m.
(1)求橋頂E到河底線AB的距離;
(2)借助過A、B、E三點(diǎn)的圓與以A、B、E為頂點(diǎn)的三角形,估計這個拋物線形橋洞與線段AB圍成圖形面積S的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(36):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,點(diǎn)D,E分別是矩形OABC中AB和BC邊上的中點(diǎn),點(diǎn)B的坐標(biāo)為(6,4)
(1)寫出A,C,E,D四點(diǎn)的坐標(biāo);并判斷點(diǎn)O到直線DE的距離是否等于線段的OE長;
(2)動點(diǎn)F在線段DE上,F(xiàn)G⊥x軸于G,F(xiàn)H⊥y軸于H,求矩形面積最大時點(diǎn)F的坐標(biāo)(利用圖1解答);
(3)我們給出如下定義:分別過拋物向上的兩點(diǎn)(不在x軸上)作x軸的垂線,如果以這兩點(diǎn)及垂足為頂點(diǎn)的矩形在這條拋物線與x軸圍成的封閉圖形內(nèi)部,則稱這個矩形是這條拋物線的內(nèi)接矩形,請你理解上述定義,解答下面的問題:若矩形OABC是某個拋物線的周長最大的內(nèi)接矩形,求這個拋物線的解析式(利用圖2解答).

查看答案和解析>>

同步練習(xí)冊答案